Crucial role of phospholipase Cepsilon in chemical carcinogen-induced skin tumor development
- PMID: 15604236
- DOI: 10.1158/0008-5472.CAN-04-3143
Crucial role of phospholipase Cepsilon in chemical carcinogen-induced skin tumor development
Abstract
Mutational activation of the ras proto-oncogenes is frequently found in skin cancers. However, the nature of downstream signaling pathways from Ras involved in skin carcinogenesis remains poorly understood. Recently, we and others identified phospholipase C (PLC) epsilon as an effector of Ras. Here we have examined the role of PLCepsilon in de novo skin chemical carcinogenesis by using mice whose PLCepsilon is genetically inactivated. PLCepsilon(-/-) mice exhibit delayed onset and markedly reduced incidence of skin squamous tumors induced by initiation with 7,12-dimethylbenz(a)anthracene followed by promotion with 12-O-tetradecanoylphorbol-13-acetate (TPA). Furthermore, the papillomas formed in PLCepsilon(-/-) mice fail to undergo malignant progression into carcinomas, in contrast to a malignant conversion rate of approximately 20% observed with papillomas in PLCepsilon(+/+) mice. In all of the tumors analyzed, the Ha-ras gene is mutationally activated irrespective of the PLCepsilon background. The skin of PLCepsilon(-/-) mice fails to exhibit basal layer cell proliferation and epidermal hyperplasia in response to TPA treatment. These results indicate a crucial role of PLCepsilon in ras oncogene-induced de novo carcinogenesis and downstream signaling from TPA, introducing PLCepsilon as a candidate molecular target for the development of anticancer drugs.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Medical
Molecular Biology Databases
Research Materials
