Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 2005 Jan;93(1):178-88.
doi: 10.1152/jn.00651.2004.

Activation of postsynaptic Ca(2+) stores modulates glutamate receptor cycling in hippocampal neurons

Affiliations
Free article
Comparative Study

Activation of postsynaptic Ca(2+) stores modulates glutamate receptor cycling in hippocampal neurons

Brady J Maher et al. J Neurophysiol. 2005 Jan.
Free article

Abstract

We show that activation of postsynaptic inositol 1,4,5-tris-phosphate receptors (IP(3)Rs) with the IP(3)R agonist adenophostin A (AdA) produces large increases in AMPA receptor (AMPAR) excitatory postsynaptic current (EPSC) amplitudes at hippocampal CA1 synapses. Co-perfusion of the Ca(2+) chelator bis-(o-aminophenoxy)-N,N,N',N'-tetraacetic acid strongly inhibited AdA-enhanced increases in EPSC amplitudes. We examined the role of AMPAR insertion/anchoring in basal synaptic transmission. Perfusion of an inhibitor of synaptotagmin-soluble n-ethylmaleimide-sensitive factor attachment protein (SNAP) receptor SNARE-mediated exocytosis depressed basal EPSC amplitudes, whereas a peptide that inhibits GluR2/3 interactions with postsynaptic density-95 (PDZ) domain proteins glutamate receptor interacting protein (GRIP)/protein interacting with C-kinase-1 (PICK1) enhanced basal synaptic transmission. These results suggest that constitutive trafficking and anchoring of AMPARs help maintain basal synaptic transmission. The regulation of postsynaptic AMPAR trafficking involves synaptotagmin-SNARE-mediated vesicle exocytosis and interactions between AMPARs and the PDZ domains in GRIP/PICK1. We show that inhibitors of synaptotagmin-SNARE-mediated exocytosis, or interactions between AMPARs and GRIP/PICK1, attenuated AdA-enhanced increases in EPSC amplitudes. These results suggest that IP(3)R-mediated Ca(2+) release can enhance AMPAR EPSC amplitudes through mechanisms that involve AMPAR-PDZ interactions and/or synaptotagmin-SNARE-mediated receptor trafficking.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources