Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2004 Apr;54(6):881-93.
doi: 10.1007/s11103-004-0335-7.

Tissue-specific expression and functional complementation of a yeast potassium-uptake mutant by a salt-induced ice plant gene mcSKD1

Affiliations

Tissue-specific expression and functional complementation of a yeast potassium-uptake mutant by a salt-induced ice plant gene mcSKD1

Yingtzy Jou et al. Plant Mol Biol. 2004 Apr.

Abstract

A full-length salt-induced transcript homologous to SKD1 (suppressor of K(+) transport growth defect) of the AAA (ATPase associated with a variety of cellular activities)-type ATPase family has been identified from the halophyte Mesembryanthemum crystallinum (ice plant). The expression of mcSKD1 was induced by 200 mM NaCl or higher in cultured ice plant cells. When cultured ice plant cells were grown in a high K(+) (42.6 mM) medium, the level of mcSKD1 expression decreased. At the whole plant level, constitutive expression of mcSKD1 was observed in roots, stems, leaves and floral organs. Addition of 400 mM NaCl increased the transcript level in roots and stems. The expression of atSKD1 , a homologue gene in Arabidopsis , was down regulated by salt stress. Under salt stress, mcSKD1 was preferentially expressed in the outer cortex of roots and stems and in the epidermal bladder cells of leaves. The mcSKD1 transcript was constitutively expressed in placenta and integuments of the developing floral buds. Expression of the full-length or C-terminal deletion of mcSKD1 was able to complement the K(+) uptake-defect phenotype in mutant Saccharomyces cerevisiae , which is defective in high- and low-affinity K(+) uptake. Deletion of the N-terminal coiled-coil motif of mcSKD1, a structure required for membrane association, resulted in greatly reduced K(+) transport. Expression of mcSKD1 also increased the salt-tolerant ability of yeast mutants and either N- or C-terminal deletion decreased the efficiency. The physiological relevancies of mcSKD1 for K(+) uptake under high salinity environments are discussed.

PubMed Disclaimer

Similar articles

Cited by

References

    1. Extremophiles. 2000 Apr;4(2):91-8 - PubMed
    1. Plant Physiol. 2001 Apr;125(4):1643-54 - PubMed
    1. Plant Physiol. 1995 Nov;109(3):735-742 - PubMed
    1. Plant Physiol. 2000 Apr;122(4):1249-59 - PubMed
    1. EMBO J. 1998 Jun 1;17(11):2982-93 - PubMed

Publication types

Associated data

LinkOut - more resources