Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2004 Oct;219(6):982-92.
doi: 10.1007/s00425-004-1301-y. Epub 2004 Jun 15.

The metabolic imbalance underlying lesion formation in Arabidopsis thaliana overexpressing farnesyl diphosphate synthase (isoform 1S) leads to oxidative stress and is triggered by the developmental decline of endogenous HMGR activity

Affiliations

The metabolic imbalance underlying lesion formation in Arabidopsis thaliana overexpressing farnesyl diphosphate synthase (isoform 1S) leads to oxidative stress and is triggered by the developmental decline of endogenous HMGR activity

David Manzano et al. Planta. 2004 Oct.

Abstract

Overexpression of Arabidopsis thaliana farnesyl diphosphate synthase isoform 1S (FPS1S) in transgenic A. thaliana (L.) Heynh. leads to necrotic lesion formation in leaves in planta and to premature senescence in detached leaves [A. Masferrer et al. (2002) Plant J 30:123-132]. Here we report that leaves of plants overexpressing FPS1S with symptoms of necrosis show increased H2O2 formation and induction of both the pathogenesis-related 1 (PR-1) and the alternative oxidase 1a (AOX1a) genes. These findings indicate that plants overexpressing FPS1S should be considered as lesion-mimic mutants and lead us to propose that H2O2 is the main inducing agent of necrosis in these plants. The onset of necrosis appears in a developmentally regulated manner that correlates with the developmental decline of endogenous 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMGR) activity. Accordingly, constitutive overexpression of HMGR in plants overexpressing FPS1S prevents both necrosis and premature senescence. These observations demonstrate that both phenotypes are due to an insufficient supply of mevalonic acid and support the notion that the metabolic imbalance associated with FPS1S overexpression is, in fact, triggered by the developmental decline of HMGR activity. We also show that overexpression of FPS1S alleviates growth inhibition caused by overexpression of the catalytic domain of isoform HMGR1S. Overall, our results reinforce the view that the levels of specific intermediates of the mevalonic acid pathway must be strictly controlled, particularly those located at branch-point positions, in order to avoid deleterious effects on plant growth and development.

PubMed Disclaimer

References

    1. Nature. 1970 Aug 15;227(5259):680-5 - PubMed
    1. Proc Natl Acad Sci U S A. 1999 Jul 6;96(14):8271-6 - PubMed
    1. Eur J Biochem. 1995 Oct 15;233(2):506-13 - PubMed
    1. Plant Physiol. 1996 Feb;110(2):645-55 - PubMed
    1. Plant Mol Biol. 1997 Nov;35(5):585-96 - PubMed

Publication types

MeSH terms