Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2005 Mar;42(3):150-8.
doi: 10.1002/mc.20073.

Microsatellite instability and protein expression of the DNA mismatch repair gene, hMLH1, of lung cancer in chromate-exposed workers

Affiliations

Microsatellite instability and protein expression of the DNA mismatch repair gene, hMLH1, of lung cancer in chromate-exposed workers

Yuji Takahashi et al. Mol Carcinog. 2005 Mar.

Abstract

Our previous studies of lung cancer in chromate-exposed workers (chromate lung cancer) have revealed that the frequency of replication error (RER) in chromate lung cancer is very high. We examined whether the RER phenotype of chromate lung cancer is due to an abnormality of DNA mismatch repair protein. We investigated the expression of a DNA mismatch repair gene, hMLH1, and hMSH2 proteins using immunohistochemistry and microsatellite instability (MSI) in 35 chromate lung cancers and 26 nonchromate lung cancers. Lung cancer without MSI or with MSI at one locus was defined as "RER(-)," lung cancer with MSI at two loci was defined as "RER(+)," and lung cancer with MSI at three or more loci was defined as "RER(++)." The repression rate of hMLH1 and hMSH2 proteins in chromate lung cancer was significantly more than that of nonchromate lung cancer (hMLH1: 56% vs. 20%, P = 0.006, hMSH2: 74% vs. 23%, P < 0.0001). In chromate lung cancer, the repression rate for hMLH1 was 43% in RER(-), 40% in RER(+), and 90% in the RER(++) group. The repression rate of hMLH1 protein in the RER(++) group was significantly higher than that in the RER(-) and RER(+) groups (P = 0.039). The inactivation of hMLH1 expression strongly correlated with the microsatellite high instability phenotype in chromate lung cancer. The genetic instability of chromate lung cancer is due to the repression of hMLH1 protein.

PubMed Disclaimer

MeSH terms