A maximum-likelihood estimator for trial-to-trial variations in noisy MEG/EEG data sets
- PMID: 15605859
- DOI: 10.1109/TBME.2004.836515
A maximum-likelihood estimator for trial-to-trial variations in noisy MEG/EEG data sets
Abstract
The standard procedure to determine the brain response from a multitrial evoked magnetoencephalography (MEG) or electroencephalography (EEG) data set is to average the individual trials of these data, time locked to the stimulus onset. When the brain responses vary from trial-to-trial this approach is false. In this paper, a maximum-likelihood estimator is derived for the case that the recorded data contain amplitude variations. The estimator accounts for spatially and temporally correlated background noise that is superimposed on the brain response. The model is applied to a series of 17 MEG data sets of normal subjects, obtained during median nerve stimulation. It appears that the amplitude of late component (30-120 ms) shows a systematic negative trend indicating a weakening response during stimulation time. For the early components (20-35 ms) no such a systematic effect was found. The model is furthermore applied on a MEG data set consisting of epileptic spikes of constant spatial distribution but varying polarity. For these data, the advantage of applying the model is that positive and negative spikes can be processed with a single model, thereby reducing the number of degrees of freedom and increasing the signal-to-noise ratio.
Similar articles
-
Maximum-likelihood estimation of low-rank signals for multiepoch MEG/EEG analysis.IEEE Trans Biomed Eng. 2004 Nov;51(11):1981-93. doi: 10.1109/TBME.2004.834285. IEEE Trans Biomed Eng. 2004. PMID: 15536900
-
Distinguishing between moving and stationary sources using EEG/MEG measurements with an application to epilepsy.IEEE Trans Biomed Eng. 2005 Mar;52(3):471-9. doi: 10.1109/TBME.2004.843289. IEEE Trans Biomed Eng. 2005. PMID: 15759577 Clinical Trial.
-
MEG and EEG source localization in beamspace.IEEE Trans Biomed Eng. 2006 Mar;53(3):430-41. doi: 10.1109/TBME.2005.869764. IEEE Trans Biomed Eng. 2006. PMID: 16532769
-
Magnetoencephalography: an investigational tool or a routine clinical technique?Epilepsy Behav. 2004 Jun;5(3):277-85. doi: 10.1016/j.yebeh.2004.02.003. Epilepsy Behav. 2004. PMID: 15145295 Review.
-
Mining event-related brain dynamics.Trends Cogn Sci. 2004 May;8(5):204-10. doi: 10.1016/j.tics.2004.03.008. Trends Cogn Sci. 2004. PMID: 15120678 Review.
Cited by
-
A fast and reliable method for simultaneous waveform, amplitude and latency estimation of single-trial EEG/MEG data.PLoS One. 2012;7(6):e38292. doi: 10.1371/journal.pone.0038292. Epub 2012 Jun 25. PLoS One. 2012. PMID: 22761672 Free PMC article.
-
Dynamic Electrical Source Imaging (DESI) of Seizures and Interictal Epileptic Discharges Without Ensemble Averaging.IEEE Trans Med Imaging. 2017 Jan;36(1):98-110. doi: 10.1109/TMI.2016.2595329. Epub 2016 Jul 27. IEEE Trans Med Imaging. 2017. PMID: 27479957 Free PMC article.
-
Maximum-likelihood estimation of channel-dependent trial-to-trial variability of auditory evoked brain responses in MEG.Biomed Eng Online. 2014 Jun 16;13:75. doi: 10.1186/1475-925X-13-75. Biomed Eng Online. 2014. PMID: 24939398 Free PMC article.
-
Multiple mechanisms link prestimulus neural oscillations to sensory responses.Elife. 2019 Jun 12;8:e43620. doi: 10.7554/eLife.43620. Elife. 2019. PMID: 31188126 Free PMC article.
-
A graphical model for estimating stimulus-evoked brain responses from magnetoencephalography data with large background brain activity.Neuroimage. 2006 Apr 1;30(2):400-16. doi: 10.1016/j.neuroimage.2005.09.055. Epub 2005 Dec 19. Neuroimage. 2006. PMID: 16360320 Free PMC article.
Publication types
MeSH terms
LinkOut - more resources
Full Text Sources