Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 2005 Jan;92(1):103-13.
doi: 10.1111/j.1471-4159.2004.02841.x.

Insulin exerts neuroprotection by counteracting the decrease in cell-surface GABA receptors following oxygen-glucose deprivation in cultured cortical neurons

Affiliations
Free article
Comparative Study

Insulin exerts neuroprotection by counteracting the decrease in cell-surface GABA receptors following oxygen-glucose deprivation in cultured cortical neurons

John G Mielke et al. J Neurochem. 2005 Jan.
Free article

Abstract

A loss of balance between excitatory and inhibitory signaling leads to excitoxicity, and contributes to ischemic cell death. Reduced synaptic inhibition as a result of dysfunction of the ionotropic GABAA receptor has been suggested as one of the major causes for this imbalance, although the underlying mechanisms remain poorly understood. In the present study, we investigated whether oxygen-glucose deprivation (OGD), an ischemia-like challenge, alters cell-surface expression of GABAA receptors in cultured hippocampal neurons, and thereby leads to excitotoxic cell death. Using cell culture ELISA as a cell surface receptor assay, we found that OGD produced a marked decrease in cell surface GABAA receptors, without altering the total amount of receptors. Furthermore, the reduction could be prevented by inhibition of receptor endocytosis with hypertonic sucrose treatment. Notably, insulin significantly limited OGD-induced changes in cell-surface GABAA receptors. In parallel, insulin protected cultured neurons against both glutamate toxicity and OGD, as assayed by mitochondrial reduction of Alamar Blue. Importantly, insulin-mediated neuroprotection was eliminated when bicuculline, a GABAA receptor antagonist, was co-applied with insulin during OGD. Together, our results strongly suggest that ischemia-like insults decrease cell surface GABAA receptors in neurons via accelerated internalization, and that insulin provides neuroprotection by counteracting this reduction.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources