Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 2005 Jan 14;229(1-2):175-84.
doi: 10.1016/j.mce.2004.08.007.

Hypoplasia of endocrine and exocrine pancreas in homozygous transgenic TGF-beta1

Affiliations
Comparative Study

Hypoplasia of endocrine and exocrine pancreas in homozygous transgenic TGF-beta1

Maki Moritani et al. Mol Cell Endocrinol. .

Abstract

We generated the homozygous transgenic mice with expression of the active form of TGF-beta1 by the glucagon promoter (homozygous NOD-TGF-beta1). The homozygous NOD-TGF-beta1 showed severe diabetes in 84.6%, impaired glucose tolerance, and low serum insulin levels. The final size of endocrine and whole pancreas decreased, respectively, to 6 and 34%, compared to wild-type mice. The homozygous N(2) backcross to C57BL/6 (B6-TGF-beta1) showed no diabetes, but impaired glucose tolerance and low serum insulin levels. In homozygous NOD-TGF-beta1, the expression of p15(INK4b) was induced by 3.4-fold in pancreatic islets than that in wild-type mice. Based on these, we conclude first that excessive paracrine TGF-beta1 signaling in islets results in endocrine and exocrine pancreatic hypoplasia, second that TGF-beta1decrease the final size of endocrine and exocrine pancreas presumably through regulating cell cycle via p15(INK4b) at least in endocrine pancreas, and third that hypoplastic action of TGF-beta1 of pancreatic islets is independent of the genetic background.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources