Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2005 Jan;23(1):210-7.
doi: 10.1016/j.orthres.2004.06.001.

The effect of radial head fracture size on elbow kinematics and stability

Affiliations
Free article

The effect of radial head fracture size on elbow kinematics and stability

Daphne M Beingessner et al. J Orthop Res. 2005 Jan.
Free article

Abstract

This study determined the effect of radial head fracture size and ligament injury on elbow kinematics. Eight cadaveric upper extremities were studied in an in vitro elbow simulator. Testing was performed with ligaments intact, with the medial collateral (MCL) or lateral collateral (LCL) ligament detached, and with both the MCL and LCL detached. Thirty degree wedges were sequentially removed from the anterolateral radial head up to 120 degrees . Valgus angulation and external rotation of the ulna relative to the humerus were determined for passive motion, active motion, and pivot shift testing with the arm in a vertical (dependent) orientation. Maximum varus-valgus laxity was calculated from measurements of varus and valgus angulation with the arm in horizontal gravity-loaded positions. No effect of increasing radial head fracture size was observed on valgus angulation during passive and active motion in the dependent position. In supination, external rotation increased with increasing fracture size during passive motion with LCL deficiency and both MCL and LCL deficiency. With intact ligaments, maximum varus-valgus laxity increased with increasing radial head fracture size. With ligament disruption, elbows were grossly unstable, and no effect of increasing radial head fracture size occurred. During pivot shift testing, performed with the ligaments intact, subtle instability was noted after resection of one-third of the radial head. In this in vitro biomechanical study, small subtle effects of radial head fracture size on elbow kinematics and stability were seen in both the ligament intact and ligament deficient elbows. These data suggest that fixation of displaced radial head fractures less than or equal to one-third of the articular diameter may have some biomechanical advantages; however, clinical correlation is required.

PubMed Disclaimer

Similar articles

Cited by

Publication types