Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2005 Jan;28(1):118-27.
doi: 10.1016/j.mcn.2004.09.001.

Neuroprotective effect of the immune system in a mouse model of severe dysmyelinating hereditary neuropathy: enhanced axonal degeneration following disruption of the RAG-1 gene

Affiliations

Neuroprotective effect of the immune system in a mouse model of severe dysmyelinating hereditary neuropathy: enhanced axonal degeneration following disruption of the RAG-1 gene

Martin Berghoff et al. Mol Cell Neurosci. 2005 Jan.

Abstract

In mouse models of later onset forms of human hereditary demyelinating neuropathies, the immune system plays a crucial pathogenic role. Here, we investigated the influence of immune cells on early onset dysmyelination in mice homozygously deficient of the myelin component P0. In peripheral nerves of P0(-/-) mice, CD8+ T-lymphocytes increased with age. Macrophages peaked at 3 months followed by a substantial decline. They were mainly of hematogenous origin. To evaluate the functional role of immune cells, we cross-bred P0(-/-) mutants with RAG-1-deficient mice. At 3 months, the number of endoneurial macrophages did not differ from the macrophage number of immunocompetent myelin mutants, but the later decline of macrophages was not observed. Quantitative electron microscopy revealed that in plantar nerves of 6-month-old double mutants, significantly more axons had degenerated than in immunocompetent littermates. These data suggest a neuroprotective net effect of T-lymphocytes on axon survival in inherited, early onset dysmyelination.

PubMed Disclaimer

Publication types

MeSH terms

Substances