Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2005 Feb 25;280(8):6570-9.
doi: 10.1074/jbc.M407397200. Epub 2004 Dec 16.

OX1 orexin receptors couple to adenylyl cyclase regulation via multiple mechanisms

Affiliations
Free article

OX1 orexin receptors couple to adenylyl cyclase regulation via multiple mechanisms

Tomas Holmqvist et al. J Biol Chem. .
Free article

Abstract

In this study, the mechanism of OX(1) orexin receptors to regulate adenylyl cyclase activity when recombinantly expressed in Chinese hamster ovary cells was investigated. In intact cells, stimulation with orexin-A led to two responses, a weak (21%), high potency (EC(50) approximately 1 nm) inhibition and a strong (4-fold), low potency (EC(50) = approximately 300 nm) stimulation. The inhibition was reversed by pertussis toxin, suggesting the involvement of G(i/o) proteins. Orexin-B was, surprisingly, almost equally as potent as orexin-A in elevating cAMP (pEC(50) = approximately 500 nm). cAMP elevation was not caused by Ca(2+) elevation or by Gbetagamma. In contrast, it relied in part on a novel protein kinase C (PKC) isoform, PKCdelta, as determined using pharmacological inhibitors. Yet, PKC stimulation alone only very weakly stimulated cAMP production (1.1-fold). In the presence of G(s) activity, orexins still elevated cAMP; however, the potencies were greatly increased (EC(50) of orexin-A = approximately 10 nm and EC(50) of orexin-B = approximately 100 nm), and the response was fully dependent on PKCdelta. In permeabilized cells, only a PKC-independent low potency component was seen. This component was sensitive to anti-Galpha(s) antibodies. We conclude that OX(1) receptors stimulate adenylyl cyclase via a low potency G(s) coupling and a high potency phospholipase C --> PKC coupling. The former or some exogenous G activation is essentially required for the PKC to significantly activate adenylyl cyclase. The results also suggest that orexin-B-activated OX(1) receptors couple to G(s) almost as efficiently as the orexin-A-activated receptors, in contrast to Ca(2+) elevation and phospholipase C activation, for which orexin-A is 10-fold more potent.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources