Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2004 Dec 29;126(51):16724-5.
doi: 10.1021/ja044540y.

Electrochemical and conductivity measurements of single-wall carbon nanotube network electrodes

Affiliations

Electrochemical and conductivity measurements of single-wall carbon nanotube network electrodes

Thomas M Day et al. J Am Chem Soc. .

Abstract

The electrochemical response of two-dimensional networks of pristine single-wall carbon nanotubes (SWNTs) has been investigated. SWNTs were grown by catalyzed chemical vapor deposition on an insulating SiO2 substrate, and then electrically contacted by lithographically defined Au electrodes. Subsequent insulation of the contact electrodes enabled the electrochemical properties of the SWNT network to be isolated and directly studied for the first time. The electrochemical activity of the SWNT network was found to be strongly dependent on the applied potential. For the same SWNT electrode, the limiting current for the oxidation of 5 mM Fe(phen)32+ was found to be much greater than expected based on the signal for the reduction of 5 mM Ru(NH3)63+. Simultaneous conductance and electrochemical measurements demonstrated decreasing conductance as the potential was scanned negative (versus Ag/AgCl) with the minimum conductance at around the reduction potential for Ru(NH3)63+. These results are consistent with the presence of both metallic and semiconducting SWNTs in the SWNT network electrode. Moreover, these results show that through appropriate choice of mediator and electrode potential, metallic SWNTs can be electrochemically addressed independently of semiconducting SWNTs.

PubMed Disclaimer

LinkOut - more resources