Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 2005 Jan 15;277(2):366-77.
doi: 10.1016/j.ydbio.2004.09.028.

Dynamics of dendritic spines and their afferent terminals: spines are more motile than presynaptic boutons

Affiliations
Free article
Comparative Study

Dynamics of dendritic spines and their afferent terminals: spines are more motile than presynaptic boutons

Jinbo Deng et al. Dev Biol. .
Free article

Abstract

Previous work has established that dendritic spines, sites of excitatory input in CNS neurons, can be highly dynamic, in later development as well as in mature brain. Although spine motility has been proposed to facilitate the formation of new synaptic contacts, we have reported that spines continue to be dynamic even if they bear synaptic contacts. An outstanding question related to this finding is whether the presynaptic terminals that contact dendritic spines are as dynamic as their postsynaptic targets. Using multiphoton time-lapse microscopy of GFP-labeled Purkinje cells and DiI-labeled granule cell parallel fiber afferents in cerebellar slices, we monitored the dynamic behavior of both presynaptic terminals and postsynaptic dendritic spines in the same preparation. We report that while spines are dynamic, the presynaptic terminals they contact are quite stable. We confirmed the relatively low levels of presynaptic terminal motility by imaging parallel fibers in vivo. Finally, spine motility can occur when a functional presynaptic terminal is apposed to it. These analyses further call into question the function of spine motility, and to what extent the synapse breaks or maintains its contact during the movement of the spine.

PubMed Disclaimer

Publication types

LinkOut - more resources