Numerical modeling of ventricular filling
- PMID: 1562102
- DOI: 10.1007/BF02368504
Numerical modeling of ventricular filling
Abstract
The fluid dynamical and physiological assumptions underlying general mathematical modeling of ventricular filling are outlined. We then describe the use of a lumped parameter model and computer simulation to study how the early transmitral velocity profile is affected by isolated changes in ventricular compliance and relaxation, atrial pressure and compliance, and valvular morphology. We show that the transmitral velocity is fundamentally affected by two physical determinants: the transmitral pressure difference and the net compliance of the atrium and the ventricle. These physical determinants in turn are specified by the various physiologic parameters of interest. This approach has shown that peak velocity is most strongly affected by initial left atrial pressure, lowered somewhat by prolonged relaxation, low atrial and ventricular compliance, and systolic dysfunction. Peak acceleration is directly affected by atrial pressure and inversely affected by the time constant of isovolumic relaxation, with little influence of compliance, whereas the deceleration rate is almost purely given by mitral valve area divided by instantaneous atrioventricular compliance at the end of the rapid filling wave.
Similar articles
-
Physical and physiological determinants of transmitral velocity: numerical analysis.Am J Physiol. 1991 May;260(5 Pt 2):H1718-31. doi: 10.1152/ajpheart.1991.260.5.H1718. Am J Physiol. 1991. PMID: 2035691
-
Analysis of the early transmitral Doppler velocity curve: effect of primary physiologic changes and compensatory preload adjustment.J Am Coll Cardiol. 1990 Sep;16(3):644-55. doi: 10.1016/0735-1097(90)90356-t. J Am Coll Cardiol. 1990. PMID: 2387938
-
Calculation of atrioventricular compliance from the mitral flow profile: analytic and in vitro study.J Am Coll Cardiol. 1992 Apr;19(5):998-1004. doi: 10.1016/0735-1097(92)90284-t. J Am Coll Cardiol. 1992. PMID: 1552125
-
[Evaluation of left ventricular diastolic function using Doppler echocardiography].Med Pregl. 1999 Jan-Feb;52(1-2):13-8. Med Pregl. 1999. PMID: 10352498 Review. Croatian.
-
[Echocardiographic and Doppler echocardiographic characterization of left ventricular diastolic function].Herz. 1990 Dec;15(6):377-92. Herz. 1990. PMID: 2279732 Review. German.
Cited by
-
Doppler mitral inflow variables time course after treadmill stress echo with and without ischemic response.Int J Cardiovasc Imaging. 2022 Aug;38(8):1751-1759. doi: 10.1007/s10554-022-02568-1. Epub 2022 Feb 26. Int J Cardiovasc Imaging. 2022. PMID: 35218466
-
Fluid-structure interaction of an aortic heart valve prosthesis driven by an animated anatomic left ventricle.J Comput Phys. 2013 Jul 1;244:41-62. doi: 10.1016/j.jcp.2012.08.036. J Comput Phys. 2013. PMID: 23729841 Free PMC article.
-
Multiphysics simulation of left ventricular filling dynamics using fluid-structure interaction finite element method.Biophys J. 2004 Sep;87(3):2074-85. doi: 10.1529/biophysj.103.035840. Biophys J. 2004. PMID: 15345582 Free PMC article.
-
Patient specific fluid-structure ventricular modelling for integrated cardiac care.Med Biol Eng Comput. 2013 Nov;51(11):1261-70. doi: 10.1007/s11517-012-1030-5. Epub 2013 Jan 24. Med Biol Eng Comput. 2013. PMID: 23340962
-
Cardiac mechanics: basic and clinical contemporary research.Ann Biomed Eng. 1992;20(1):3-17. doi: 10.1007/BF02368503. Ann Biomed Eng. 1992. PMID: 1562103 Review.