Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 2005 Jun;26(17):3395-404.
doi: 10.1016/j.biomaterials.2004.09.023.

Modulation of porosity in apatitic cements by the use of alpha-tricalcium phosphate-calcium sulphate dihydrate mixtures

Affiliations
Comparative Study

Modulation of porosity in apatitic cements by the use of alpha-tricalcium phosphate-calcium sulphate dihydrate mixtures

Enrique Fernández et al. Biomaterials. 2005 Jun.

Abstract

Calcium phosphate bone cements are injectable biomaterials that are being used in dental and orthopaedic applications through minimally invasive surgery techniques. Nowadays, apatitic bone cements based on alpha-tricalcium phosphate (alpha-TCP) are of special interest due to their self-setting behaviour when mixed with an aqueous liquid phase. In this study, a new method to improve osteointegration of alpha-TCP-based cements is presented. This method consists in the modification of the cement's powder phase with different amounts of calcium sulphate dihydrate (CSD). The resulting hardening properties of the new biphasic cements are a combination between the progressive hardening due to the main alpha-TCP reactant and the progressive dissolution of the CSD phase, which render a porous material. It was observed that the maximum compressive strength of Biocement-H (45 MPa) decreased as the amount of CSD increased in the cement powder mixture ( approximately 30 MPa for 25 wt% of CSD). It was also observed that after complete dissolution of the CSD phase a porous apatitic structure appears with a mechanical compressive strength suitable for cancellous bone applications (10 MPa).

PubMed Disclaimer

Publication types

LinkOut - more resources