Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2005;15(1-2):51-63.

Renal epithelia in long term gradient culture for biomaterial testing and tissue engineering

Affiliations
  • PMID: 15623930

Renal epithelia in long term gradient culture for biomaterial testing and tissue engineering

Will W Minuth et al. Biomed Mater Eng. 2005.

Abstract

In the organism epithelia perform perfect barrier functions. Strong rheological and mechanical influences constitute the normal environment of this tissue throughout life. Most epithelia are exposed to different fluids at the luminal and basal sides. To obtain realistic information about tissue development in modern biomaterial testing and tissue engineering it is necessary to mimick the natural environment of epithelia. Cultured cells are brought in contact with an artificial extracellular matrix to determine whether proper development into a functional epithelium occurs. As under natural conditions the cultures have to withstand mechanical and fluid stress over a prolonged period of time in close contact to a selected biomaterial. However, development of tissue-specific features such as polarization, tightness and transport under in vitro conditions will only occur, if the biomaterial and the culture conditions support tissue development. Leakage, edge damage and pressure differences during culture have to be avoided so that the natural functions of the growing epithelium can develop. Our aim is to generate functional epithelia derived from renal explants containing stem cells, which are microsurgically isolated and placed into specific O-ring carriers for optimal handling. The cells develop in combination with a collagenous matrix from an embryonic into a functional collecting duct (rCD) epithelium. To achieve optimal culture conditions the tissue is placed in a gradient culture container. A typical environment can be simulated by superfusing different culture media at the luminal and basal sides. Within days epithelia growing inside the gradient container build up a physiological barrier, which is maintained during the whole culture period. The described method allows to investigate the influence of new biomaterials over prolonged periods of time.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources