Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2005 Jan;105(1):145-55.
doi: 10.1097/01.AOG.0000146640.45530.69.

Nitric oxide and fetal organ blood flow during normoxia and hypoxemia in endotoxin-treated fetal sheep

Affiliations

Nitric oxide and fetal organ blood flow during normoxia and hypoxemia in endotoxin-treated fetal sheep

Audrey B C Coumans et al. Obstet Gynecol. 2005 Jan.

Abstract

Objective: To investigate the role of nitric oxide in the process of circulatory decentralization during fetal hypoxemia.

Methods: Fifteen sheep with singleton pregnancies were chronically instrumented at 107 days of gestation (term is 147 days). Three days later, 8 of the fetuses received nitro-L-arginine methyl ester (L-NAME), an inhibitor of nitric oxide synthesis. Fifteen minutes after L-NAME administration, all 15 fetuses received lipopolysaccharides (LPS) from a strain of Escherichia coli. The 7 fetuses that received LPS only were used as controls. Sixty minutes after LPS was administered, the maternal aorta was occluded for 2 minutes in all fetuses. Organ blood flow and physiological variables were measured at 75 minutes before the start of occlusion (ie, at the time of L-NAME administration to the experimental group), at 1 minute before the start of occlusion, and at 2, 4, and 30 minutes after the start of occlusion.

Results: Arterial pH was lower in the L-NAME group than in the control group at 1 minute before and 2 minutes after occlusion. Mean arterial pressure was higher in the L-NAME group than in the control group at 2 and 4 minutes after occlusion. Cardiac output fell in the L-NAME group and was lower than in the control group; the percentage of cardiac output to the cerebrum in the L-NAME group was 35% lower than that in the control group. Throughout the study, placental blood flow decreased by more than 80% in both groups and remained low. Blood flow to the fetal body decreased by 65% in the L-NAME group and was lower than in the control group. Blood flow to the carcass also decreased in the L-NAME group and was 36% of that in the control group.

Conclusion: Inhibition of nitric oxide synthesis causes a general vasoconstriction in practically all organs and leads to a reduction in LPS-induced circulatory decentralization. The changes in blood flow distribution in endotoxin-treated fetal sheep seem to be mediated in part by nitric oxide.

PubMed Disclaimer

MeSH terms

LinkOut - more resources