Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2004 Dec;56(3):159-71.
doi: 10.1016/j.etp.2004.08.002.

Influence of post-mortem delay and storage temperature on the immunohistochemical detection of antigens in the CNS of mice

Affiliations

Influence of post-mortem delay and storage temperature on the immunohistochemical detection of antigens in the CNS of mice

Heidegard Hilbig et al. Exp Toxicol Pathol. 2004 Dec.

Abstract

The aim of this work was to compare the results of histochemical and immunohistochemical methods using mouse brains which were fixed with various post-mortem delays and storage temperatures (at a constant 4 degrees C or 22 degrees C, or at gradually decreasing post-mortem temperatures, mimicking conditions of human corpse). We studied the effects of post-mortem delay on glial fibrillary acidic protein, extracellular matrix components to which Wisteria floribunda agglutinin binds, non-phosphorylated neurofilament H, synaptophysin, calbindin and nitric oxide synthase isoenzymes. At the light microscopic level first signs of post-mortem changes were detectable after 6 h. Glial fibrillary acidic protein was most affected by post-mortem delay since its immunoreactivity increased dramatically with increasing post-mortem delay. N-acetylgalactosamines-beta1 labeled lectin binding sites, calbindin and intraneuronal non-phosphorylated neurofilament H seemed to be stable up to 12 h post-mortem. Storage temperature influenced the NADPH-d activity and the content of synaptophysin immunoreactivity to higher degree than all of the other parameters. We found only marginal differences of alterations comparing neocortex, hippocampus and corpus callosum. Our results indicate that different antigens are affected differently by the ongoing catabolic processes during post-mortem delay.

PubMed Disclaimer

MeSH terms