Improved detection and classification of arrhythmias in noise-corrupted electrocardiograms using contextual information within an expert system
- PMID: 1562826
Improved detection and classification of arrhythmias in noise-corrupted electrocardiograms using contextual information within an expert system
Abstract
The authors are developing an expert-system electrocardiogram (ECG) arrhythmia detector (HOBBES) for automated, long-term rhythm analysis. HOBBES employs rules and procedures that emulate how human experts analyze ECGs. This paper describes methods that HOBBES employs for improving error detection and correction in processing noisy ECGs. During periods of clean data, HOBBES develops a knowledge base that describes typical beat shapes, typical interbeat intervals between beats of different types, and patterns of beat sequences that it has observed. During periods of noisy data, HOBBES applies the information learned from the clean data to reject artifact and classify beats. HOBBES was evaluated in a noise-stress test using 35 half-hour ECG records containing a mixture of supraventricular and ventricular ectopy in normal sinus rhythm. In comparison with a classical arrhythmia detector (ARISTOTLE), HOBBES increased the number of correctly classified beats and enhanced the rejection of artifact.
Similar articles
-
A deep convolutional neural network model to classify heartbeats.Comput Biol Med. 2017 Oct 1;89:389-396. doi: 10.1016/j.compbiomed.2017.08.022. Epub 2017 Aug 24. Comput Biol Med. 2017. PMID: 28869899
-
Quickly finding a needle in a haystack: a new automated cardiac arrhythmia detection software for preclinical studies.J Pharmacol Toxicol Methods. 2012 Sep;66(2):92-7. doi: 10.1016/j.vascn.2012.04.008. Epub 2012 Apr 23. J Pharmacol Toxicol Methods. 2012. PMID: 22554864
-
Grammatic representation of beat sequences for fuzzy arrhythmia diagnosis.Int J Biomed Comput. 1991 Mar-Apr;27(3-4):245-59. doi: 10.1016/0020-7101(91)90066-n. Int J Biomed Comput. 1991. PMID: 2050433
-
[Electrocardiograph beat pattern recognition].Sheng Wu Yi Xue Gong Cheng Xue Za Zhi. 2005 Feb;22(1):202-6. Sheng Wu Yi Xue Gong Cheng Xue Za Zhi. 2005. PMID: 15762150 Review. Chinese.
-
[Automated analysis technology of electrocardiograms].Sheng Wu Yi Xue Gong Cheng Xue Za Zhi. 2000 Sep;17(3):339-42. Sheng Wu Yi Xue Gong Cheng Xue Za Zhi. 2000. PMID: 11285851 Review. Chinese.
Cited by
-
GAN-based patient information hiding for an ECG authentication system.Biomed Eng Lett. 2023 Mar 24;13(2):197-207. doi: 10.1007/s13534-023-00266-y. eCollection 2023 May. Biomed Eng Lett. 2023. PMID: 37124113 Free PMC article.
-
Automatic segmentation of atrial fibrillation and flutter in single-lead electrocardiograms by self-supervised learning and Transformer architecture.J Am Med Inform Assoc. 2023 Dec 22;31(1):79-88. doi: 10.1093/jamia/ocad219. J Am Med Inform Assoc. 2023. PMID: 37949101 Free PMC article.
-
Continual Learning with Deep Neural Networks in Physiological Signal Data: A Survey.Healthcare (Basel). 2024 Jan 9;12(2):155. doi: 10.3390/healthcare12020155. Healthcare (Basel). 2024. PMID: 38255045 Free PMC article. Review.
-
A Survey of Deep Anomaly Detection in Multivariate Time Series: Taxonomy, Applications, and Directions.Sensors (Basel). 2025 Jan 1;25(1):190. doi: 10.3390/s25010190. Sensors (Basel). 2025. PMID: 39796981 Free PMC article. Review.
-
Review on spiking neural network-based ECG classification methods for low-power environments.Biomed Eng Lett. 2024 Jun 14;14(5):917-941. doi: 10.1007/s13534-024-00391-2. eCollection 2024 Sep. Biomed Eng Lett. 2024. PMID: 39220032 Free PMC article. Review.
MeSH terms
LinkOut - more resources
Other Literature Sources
Medical