Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2005 Feb;51(2):85-94.
doi: 10.1016/j.phrs.2004.07.012.

An overview on biological mechanisms of PPARs

Affiliations
Review

An overview on biological mechanisms of PPARs

Bhavani Prasad Kota et al. Pharmacol Res. 2005 Feb.

Abstract

Peroxisome proliferator activated receptors (PPARs) are transcriptional factors belonging to the ligand-activated nuclear receptor superfamily. They are ubiquitously expressed throughout the body. On activation by endogenously secreted prostaglandins and fatty acids, they initiate transcription of an array of genes that are involved in energy homeostasis. So far, three major types have been identified, namely PPAR-alpha, PPAR-beta/delta and PPAR-gamma. PPAR-alpha and PPAR-gamma are crucial for lipid and glucose metabolism, respectively. Although limited information is available on PPAR-beta biological functions, recent studies have shown that PPAR-beta also regulates glucose metabolism and fatty acid oxidation. The discovery of PPAR-alpha agonists such as fibrates and PPAR-gamma agonists such as thiozolidinediones enables recognition of the mechanisms involved in ameliorating the adverse effects of chronic disorders such as atherosclerosis and diabetes. In addition, PPARs are also involved in the regulation of various types of tumours, inflammation, cardiovascular diseases and infertility. The importance of these transcription factors in physiology and pathophysiology has instigated much research in this field. In this article, structural features of PPARs, their gene transcription mechanisms and recent developments in the discovery of their biological functions are reviewed.

PubMed Disclaimer

MeSH terms

Substances

LinkOut - more resources