Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2005 Apr 8;280(14):13315-20.
doi: 10.1074/jbc.M414151200. Epub 2005 Jan 4.

Dimeric trigger factor stably binds folding-competent intermediates and cooperates with the DnaK-DnaJ-GrpE chaperone system to allow refolding

Affiliations
Free article

Dimeric trigger factor stably binds folding-competent intermediates and cooperates with the DnaK-DnaJ-GrpE chaperone system to allow refolding

Chuan-Peng Liu et al. J Biol Chem. .
Free article

Abstract

Trigger factor (TF) is the first chaperone encountered by the nascent chain in bacteria and forms a stoichiometric complex with the ribosome. However, the functional significance of the high cytosolic concentration of uncomplexed TF, the majority of which is dimeric, is unknown. To gain insight into TF function, we investigated the TF concentration dependence of the glyceraldehyde-3-phosphate dehydrogenase (GAPDH) reactivation yield in the presence and absence of the DnaK-DnaJ-GrpE chaperone system in vitro. Cross-linking results indicate that the observed decrease in the reactivation yield of GAPDH at high concentrations of TF is due to the formation of a stable complex between TF dimer and GAPDH intermediates. In the absence of TF, or at low TF concentrations, the DnaK-DnaJ-GrpE chaperone system had negligible effect on the GAPDH refolding yield. However, GAPDH intermediates bound and held by dimeric TF could be specifically rescued by the DnaK-DnaJ-GrpE chaperone system in an ATP-dependent manner. This indicates the potential of TF, in its dimeric form, to act as a binding chaperone, maintaining non-native proteins in a refolding competent conformation and cooperating with downstream molecular chaperones to facilitate post-translational or post-stress protein folding.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources