Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2005 Feb 25;280(8):6261-4.
doi: 10.1074/jbc.C400573200. Epub 2005 Jan 4.

The elasticity of individual titin PEVK exons measured by single molecule atomic force microscopy

Affiliations
Free article

The elasticity of individual titin PEVK exons measured by single molecule atomic force microscopy

Atom Sarkar et al. J Biol Chem. .
Free article

Abstract

The I-band region of the giant muscle protein titin contains a large domain enriched for the amino acids proline, glutamate, valine, and lysine and is denoted the PEVK domain. The PEVK domain of titin encodes a random coil shown to be an important factor in the passive elasticity of titin. Muscle-specific splicing of 116 PEVK exons encodes this domain. It has been proposed that proline contents determine the elasticity of the PEVK polypeptide, where the individual exons code for "flexibility cassettes." To test this hypothesis, we have measured the elasticity of three distinct polypeptides encoded by individual PEVK exons (161, 120 and 184) that varied greatly in their proline contents (7, 14, and 37% respectively) and total PEVK contents (55, 70, and 87%). We used single molecule atomic force microscopy techniques to measure the persistence length, p, of the engineered PEVK proteins. Surprisingly, all three exons 161, 120, and 184 coded for proteins with similar values of persistence length, p = 0.92 +/- 0.38, 0.89 +/- 0.42, and 0.98 +/- 0.4 nm, respectively. We conclude that the PEVK exons encode polypeptides of similar elastic properties, unrelated to their total PEVK contents. Hence, alternative splicing solely adjusts the length of the PEVK domain of titin.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources