Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2005 Jan-Feb;156(1):17-29.
doi: 10.1016/j.resmic.2004.07.009.

A conserved polar region in the cell division site determinant MinD is required for responding to MinE-induced oscillation but not for localization within coiled arrays

Affiliations
Free article

A conserved polar region in the cell division site determinant MinD is required for responding to MinE-induced oscillation but not for localization within coiled arrays

Jason Szeto et al. Res Microbiol. 2005 Jan-Feb.
Free article

Abstract

A region in the cell division site determinant MinD required for stimulation by MinE and which determines MinD topological specificity along coil-like structures has been identified. Structural modeling of dimeric MinD and sequence alignment of 24 MinD proteins revealed a conserved polar region in Gram-negative bacterial MinD proteins, corresponding to residues 92-94 of Neisseria gonorrhoeae MinD (MinD(Ng)). Using MinD(Ng) as a paradigm for MinD functionality in Gram-negative organisms, mutation of these conserved residues did not abrogate MinD(Ng) self-association, nor its interaction with MinE(Ng) and the cell division inhibitor MinC. Although the MinD(Ng) mutant dimerized in the presence of ATP, its ATPase activity was not stimulated by MinE(Ng), unlike wild-type MinD(Ng). GFP fusions to either MinD(Ng) or to Escherichia coli MinD bearing simultaneous or individual mutations to residues 92-94 localized within coiled arrays along the E. coli inner cell periphery, similar to wild-type GFP-MinD. However, unlike wild-type GFP-fusions, the mutant proteins were distributed uniformly throughout the array, despite the presence of MinE, which normally imparts topological specificity to MinD by inducing the latter to oscillate from pole-to-pole and away from midcell. Hence, despite localizing along the inner cell periphery as a polymeric structure, the mutant MinD proteins in this study have lost the ability to be efficiently stimulated by MinE(Ng), resulting in a loss of distinct pole-to-pole oscillation.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources