Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Clinical Trial
. 2005 Jan;77(1):17-23.
doi: 10.1016/j.clpt.2004.08.026.

Different effects of three transporting inhibitors, verapamil, cimetidine, and probenecid, on fexofenadine pharmacokinetics

Affiliations
Clinical Trial

Different effects of three transporting inhibitors, verapamil, cimetidine, and probenecid, on fexofenadine pharmacokinetics

Norio Yasui-Furukori et al. Clin Pharmacol Ther. 2005 Jan.

Abstract

Objective: Fexofenadine is a substrate of P-glycoprotein and organic anion transporting polypeptides. The aim of this study was to compare the inhibitory effects of different transporting inhibitors on fexofenadine pharmacokinetics.

Methods: Twelve male volunteers took a single oral 120-mg dose of fexofenadine. Thereafter three 6-day courses of either 240 mg verapamil, an inhibitor of P-glycoprotein, 800 mg cimetidine, an inhibitor of organic cation transporters, or 2000 mg probenecid, an inhibitor of organic anion transporting polypeptides, were administered on a daily basis in a randomized fashion with the same dose of fexofenadine on day 6. Plasma and urine concentrations of fexofenadine were monitored up to 48 hours after dosing.

Results: Verapamil treatment significantly increased the peak plasma concentration by 2.9-fold (95% confidence interval [CI], 2.4- to 4.0-fold) and the area under the plasma concentration-time curve from time 0 to infinity [AUC(0-infinity)] of fexofenadine by 2.5-fold (95% CI, 2.0- to 3.3-fold). No changes in any plasma pharmacokinetic parameters of fexofenadine were found during cimetidine treatment. AUC(0-infinity) was slightly but significantly increased during probenecid treatment by 1.5-fold (95% CI, 1.1- to 2.4-fold). Renal clearance of fexofenadine was significantly decreased during cimetidine treatment to 61% (95% CI, 50%-98%) and during probenecid treatment to 27% (95% CI, 20%-58%) but not during verapamil treatment.

Conclusion: This study suggests that verapamil increases fexofenadine exposure probably because of an increase in bioavailability through P-glycoprotein inhibition and that probenecid slightly increases the area under the plasma concentration-time curve of fexofenadine as a result of a pronounced reduction in renal clearance. However, it may be difficult to explain these interactions by simple inhibitory mechanisms on target transporters.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources