Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2005 Jan 1;122(1):14904.
doi: 10.1063/1.1827211.

Field-theoretic simulations of polymer solutions: finite-size and discretization effects

Affiliations

Field-theoretic simulations of polymer solutions: finite-size and discretization effects

Alfredo Alexander-Katz et al. J Chem Phys. .

Erratum in

  • J Chem Phys. 2005 Jun 22;122(24):249902

Abstract

In this work we analyze the finite-size and discretization effects that occur in field-theoretic polymer simulations. Following our previous work, we study these effects for a polymer solution in the canonical ensemble confined to a slit (with nonadsorbing walls) of width L, and focus on the behavior of two quantities: the chemical potential mu, and the correlation length xi. Our results show that the finite-size effects disappear for both quantities once the lateral size of the system L is larger than approximately 2xi. On the other hand, the chemical potential is dominated by the lattice discretization Deltax. The origins of this dependence are discussed in detail, and a scheme is proposed in which this effect is avoided. Our results also show that the density profiles do not depend on the lattice discretization if Deltax < approximately xi/4. This implies that the correlation length xi, extracted from the density profiles, is free of lattice size and lattice discretization artifacts once L is > approximately 2xi and Deltax < approximately xi/4.

PubMed Disclaimer

LinkOut - more resources