Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2004 Dec;17(6):549-55.
doi: 10.1097/00001432-200412000-00007.

Recent advances in the treatment of infections due to resistant Staphylococcus aureus

Affiliations
Review

Recent advances in the treatment of infections due to resistant Staphylococcus aureus

Gregory M Anstead et al. Curr Opin Infect Dis. 2004 Dec.

Abstract

Purpose of review: This paper reviews recent data on the treatment of infections caused by drug-resistant Staphylococcus aureus, particularly methicillin-resistant S. aureus (MRSA). This review will focus on new findings reported in the English-language medical literature from June 2003 to September 2004.

Recent findings: Despite the emergence of resistant and multidrug-resistant S. aureus, we have three effective drugs in clinical use for which little resistance has been observed: quinupristin-dalfopristin, linezolid, and daptomycin. Linezolid looks particularly promising in the treatment of MRSA pneumonia. Daptomycin displays rapid bactericidal activity in vitro, but, so far, clinical trials have only been conducted for the treatment of skin and soft-tissue infections. There are three drugs with broad-spectrum activity against Gram-positive organisms at an advanced stage of testing: two new glycopeptides with potent bacteriocidal activity and long half-lives (oritavancin and dalbavancin), and tigecycline, a minocycline derivative. These drugs have also shown efficacy in the treatment of skin and soft-tissue infections.

Summary: The promising data that have emerged in the last year indicate that we may have six available drugs to treat resistant S. aureus infections within the next few years. The next goal is to determine the appropriate indications and cost-effectiveness of each of these drugs in our treatment strategy against S. aureus and other Gram-positive pathogens.

PubMed Disclaimer

MeSH terms