Secondary structure prediction of interacting RNA molecules
- PMID: 15644199
- DOI: 10.1016/j.jmb.2004.10.082
Secondary structure prediction of interacting RNA molecules
Abstract
Computational tools for prediction of the secondary structure of two or more interacting nucleic acid molecules are useful for understanding mechanisms for ribozyme function, determining the affinity of an oligonucleotide primer to its target, and designing good antisense oligonucleotides, novel ribozymes, DNA code words, or nanostructures. Here, we introduce new algorithms for prediction of the minimum free energy pseudoknot-free secondary structure of two or more nucleic acid molecules, and for prediction of alternative low-energy (sub-optimal) secondary structures for two nucleic acid molecules. We provide a comprehensive analysis of our predictions against secondary structures of interacting RNA molecules drawn from the literature. Analysis of our tools on 17 sequences of up to 200 nucleotides that do not form pseudoknots shows that they have 79% accuracy, on average, for the minimum free energy predictions. When the best of 100 sub-optimal foldings is taken, the average accuracy increases to 91%. The accuracy decreases as the sequences increase in length and as the number of pseudoknots and tertiary interactions increases. Our algorithms extend the free energy minimization algorithm of Zuker and Stiegler for secondary structure prediction, and the sub-optimal folding algorithm by Wuchty et al. Implementations of our algorithms are freely available in the package MultiRNAFold.
Similar articles
-
A new algorithm for RNA secondary structure design.J Mol Biol. 2004 Feb 20;336(3):607-24. doi: 10.1016/j.jmb.2003.12.041. J Mol Biol. 2004. PMID: 15095976
-
An interactive framework for RNA secondary structure prediction with a dynamical treatment of constraints.J Mol Biol. 1995 Nov 24;254(2):163-74. doi: 10.1006/jmbi.1995.0608. J Mol Biol. 1995. PMID: 7490740
-
[Predicting RNA secondary structures including pseudoknots by covariance with stacking and minimum free energy].Sheng Wu Gong Cheng Xue Bao. 2008 Apr;24(4):659-64. Sheng Wu Gong Cheng Xue Bao. 2008. PMID: 18616179 Chinese.
-
Prediction of RNA secondary structure by free energy minimization.Curr Opin Struct Biol. 2006 Jun;16(3):270-8. doi: 10.1016/j.sbi.2006.05.010. Epub 2006 May 19. Curr Opin Struct Biol. 2006. PMID: 16713706 Review.
-
Prediction and design of DNA and RNA structures.N Biotechnol. 2010 Jul 31;27(3):184-93. doi: 10.1016/j.nbt.2010.02.012. Epub 2010 Mar 1. N Biotechnol. 2010. PMID: 20193785 Review.
Cited by
-
An efficient algorithm for the stochastic simulation of the hybridization of DNA to microarrays.BMC Bioinformatics. 2009 Dec 10;10:411. doi: 10.1186/1471-2105-10-411. BMC Bioinformatics. 2009. PMID: 20003312 Free PMC article.
-
A novel constraint for thermodynamically designing DNA sequences.PLoS One. 2013 Aug 28;8(8):e72180. doi: 10.1371/journal.pone.0072180. eCollection 2013. PLoS One. 2013. PMID: 24015217 Free PMC article.
-
Restoration of correct splicing in IVSI-110 mutation of β-globin gene with antisense oligonucleotides: implications and applications in functional assay development.Iran J Basic Med Sci. 2017 Jun;20(6):700-707. doi: 10.22038/IJBMS.2017.8840. Iran J Basic Med Sci. 2017. PMID: 28868125 Free PMC article.
-
CParty: hierarchically constrained partition function of RNA pseudoknots.Bioinformatics. 2024 Dec 26;41(1):btae748. doi: 10.1093/bioinformatics/btae748. Bioinformatics. 2024. PMID: 39700413 Free PMC article.
-
Therapeutic nucleic acids: current clinical status.Br J Clin Pharmacol. 2016 Sep;82(3):659-72. doi: 10.1111/bcp.12987. Epub 2016 Jun 3. Br J Clin Pharmacol. 2016. PMID: 27111518 Free PMC article. Review.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources