Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2005 Mar 1;58(4):905-12.
doi: 10.1002/prot.20375.

Prediction of protein B-factor profiles

Affiliations

Prediction of protein B-factor profiles

Zheng Yuan et al. Proteins. .

Abstract

The polypeptide backbones and side chains of proteins are constantly moving due to thermal motion and the kinetic energy of the atoms. The B-factors of protein crystal structures reflect the fluctuation of atoms about their average positions and provide important information about protein dynamics. Computational approaches to predict thermal motion are useful for analyzing the dynamic properties of proteins with unknown structures. In this article, we utilize a novel support vector regression (SVR) approach to predict the B-factor distribution (B-factor profile) of a protein from its sequence. We explore schemes for encoding sequences and various settings for the parameters used in SVR. Based on a large dataset of high-resolution proteins, our method predicts the B-factor distribution with a Pearson correlation coefficient (CC) of 0.53. In addition, our method predicts the B-factor profile with a CC of at least 0.56 for more than half of the proteins. Our method also performs well for classifying residues (rigid vs. flexible). For almost all predicted B-factor thresholds, prediction accuracies (percent of correctly predicted residues) are greater than 70%. These results exceed the best results of other sequence-based prediction methods.

PubMed Disclaimer

Publication types

LinkOut - more resources