Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2005 Mar 18;280(11):10073-82.
doi: 10.1074/jbc.M411842200. Epub 2005 Jan 12.

Nitric oxide inhibits mammalian methylmalonyl-CoA mutase

Affiliations
Free article

Nitric oxide inhibits mammalian methylmalonyl-CoA mutase

Amanpreet Kambo et al. J Biol Chem. .
Free article

Abstract

Methylmalonyl-CoA mutase is a key enzyme in intermediary metabolism, and children deficient in enzyme activity have severe metabolic acidosis. We found that nitric oxide (NO) inhibits methylmalonyl-CoA mutase activity in rodent cell extracts. The inhibition of enzyme activity occurred within minutes and was not prevented by thiols, suggesting that enzyme inhibition was not occurring via NO reaction with cysteine residues to form nitrosothiol groups. Enzyme inhibition was dependent on the presence of substrate, implying that NO was reacting with cobalamin(II) (Cbl(II)) and/or the deoxyadenosyl radical (.CH(2)-Ado), both of which are generated from the co-factor of the enzyme, 5'-deoxyadenosyl-cobalamin (AdoCbl), on substrate binding. Consistent with this hypothesis was the finding that high micromolar concentrations (> or =600 microm) of oxygen also inhibited enzyme activity. To study the mechanism of NO reaction with AdoCbl, we simulated the enzymatic reaction by photolyzing AdoCbl, and found that even at low NO concentrations, NO reacted with both the generated Cbl(II) and .CH(2)-Ado indicating that NO could effectively compete with the back formation of AdoCbl. Thus, NO inhibition of methylmalonyl-CoA mutase appeared to be from the reaction of NO with both AdoCbl intermediates (Cbl(II) and .CH(2)-Ado) generated during the enzymatic reaction. The inhibition of methylmalonyl-CoA mutase by NO was likely of physiological relevance because a NO donor inhibited enzyme activity in intact cells, and scavenging NO from cells or inhibiting cellular NO synthesis increased methylmalonyl-CoA mutase activity when measured subsequently in cell extracts.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources