Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2005 Mar;16(3):697-702.
doi: 10.1681/ASN.2004060494. Epub 2005 Jan 12.

Cisplatin nephrotoxicity is mediated by deoxyribonuclease I

Affiliations

Cisplatin nephrotoxicity is mediated by deoxyribonuclease I

Alexei G Basnakian et al. J Am Soc Nephrol. 2005 Mar.

Abstract

Cisplatin is commonly used for chemotherapy in a wide variety of tumors; however, its use is limited by kidney toxicity. Although the exact mechanism of cisplatin-induced nephrotoxicity is not understood, several studies showed that it is associated with DNA fragmentation induced by an unknown endonuclease. It was demonstrated previously that deoxyribonuclease I (DNase I) is a highly active renal endonuclease, and its silencing by antisense is cytoprotective against the in vitro hypoxia injury of kidney tubular epithelial cells. This study used recently developed DNase1 knockout (KO) mice to determine the role of this endonuclease in cisplatin-induced nephrotoxicity. The data showed that DNase I represents approximately 80% of the total endonuclease activity in the kidney and cultured primary renal tubular epithelial cells. In vitro, primary renal tubular epithelial cells isolated from KO animals were resistant to cisplatin (8 microM) injury. DNase I KO mice were also markedly protected against the toxic injury induced by a single injection of cisplatin (20 mg/kg), by both functional (blood urea nitrogen and serum creatinine) and histologic criteria (tubular necrosis and in situ DNA fragmentation assessed by the terminal deoxynucleotidyl transferase nick end-labeling). These data provide direct evidence that DNase I is essential for kidney injury induced by cisplatin.

PubMed Disclaimer

Publication types

LinkOut - more resources