Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 2005 Feb;55(2):178-81.
doi: 10.1093/jac/dkh524. Epub 2005 Jan 13.

Molecular evaluation of antibiotic susceptibility of Tropheryma whipplei in axenic medium

Affiliations
Comparative Study

Molecular evaluation of antibiotic susceptibility of Tropheryma whipplei in axenic medium

A Boulos et al. J Antimicrob Chemother. 2005 Feb.

Abstract

Objectives and methods: Whipple's disease is a rare multisystem chronic infection, involving the intestinal tract as well as various other organs. Tropheryma whipplei is a slow-growing facultative intracellular bacterium that remains poorly understood. In vitro antibiotic susceptibility testing has previously been assessed in cells using a real-time quantitative PCR assay. In this study, we have evaluated the antibiotic susceptibility of three strains of T. whipplei grown in axenic medium using the same assay.

Results: The active compounds in axenic medium were doxycycline, macrolide compounds, penicillin G, streptomycin, rifampicin, chloramphenicol, thiamphenicol, teicoplanin, vancomycin, amoxicillin, gentamicin, aztreonam, levofloxacin and ceftriaxone, with MICs in the range 0.06-1 mg/L. Cefalothin was less active, with MICs in the range 2-4 mg/L. We found that co-trimoxazole was active with MICs in the range 0.5-1 mg/L, and sulfamethoxazole alone was active with MICs in the range 0.5-1 mg/L. MICs of trimethoprim varied from 64-128 mg/L.

Conclusions: Co-trimoxazole was effective in vitro, but this activity was due to sulfamethoxazole alone. These results were in accordance with the fact that T. whipplei does not contain the encoding gene for dihydrofolate reductase, the target for trimethoprim.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms