Pathway to synthesis and processing of mycolic acids in Mycobacterium tuberculosis
- PMID: 15653820
- PMCID: PMC544180
- DOI: 10.1128/CMR.18.1.81-101.2005
Pathway to synthesis and processing of mycolic acids in Mycobacterium tuberculosis
Abstract
Mycobacterium tuberculosis is known to synthesize alpha-, methoxy-, and keto-mycolic acids. We propose a detailed pathway to the biosynthesis of all mycolic acids in M. tuberculosis. Fatty acid synthetase I provides C(20)-S-coenzyme A to the fatty acid synthetase II system (FAS-IIA). Modules of FAS-IIA and FAS-IIB introduce cis unsaturation at two locations on a growing meroacid chain to yield three different forms of cis,cis-diunsaturated fatty acids (intermediates to alpha-, methoxy-, and keto-meroacids). These are methylated, and the mature meroacids and carboxylated C(26)-S-acyl carrier protein enter into the final Claisen-type condensation with polyketide synthase-13 (Pks13) to yield mycolyl-S-Pks13. We list candidate genes in the genome encoding the proposed dehydrase and isomerase in the FAS-IIA and FAS-IIB modules. We propose that the processing of mycolic acids begins by transfer of mycolic acids from mycolyl-S-Pks13 to d-mannopyranosyl-1-phosphoheptaprenol to yield 6-O-mycolyl-beta-d-mannopyranosyl-1-phosphoheptaprenol and then to trehalose 6-phosphate to yield phosphorylated trehalose monomycolate (TMM-P). Phosphatase releases the phosphate group to yield TMM, which is immediately transported outside the cell by the ABC transporter. Antigen 85 then catalyzes the transfer of a mycolyl group from TMM to the cell wall arabinogalactan and to other TMMs to produce arabinogalactan-mycolate and trehalose dimycolate, respectively. We list candidate genes in the genome that encode the proposed mycolyltransferases I and II, phosphatase, and ABC transporter. The enzymes within this total pathway are targets for new drug discovery.
Figures














Similar articles
-
The biosynthesis of mycolic acids in Mycobacterium tuberculosis relies on multiple specialized elongation complexes interconnected by specific protein-protein interactions.J Mol Biol. 2005 Nov 4;353(4):847-58. doi: 10.1016/j.jmb.2005.09.016. Epub 2005 Sep 23. J Mol Biol. 2005. PMID: 16213523
-
The reductase that catalyzes mycolic motif synthesis is required for efficient attachment of mycolic acids to arabinogalactan.J Biol Chem. 2007 Apr 13;282(15):11000-8. doi: 10.1074/jbc.M608686200. Epub 2007 Feb 17. J Biol Chem. 2007. PMID: 17308303
-
Mycolyltransferase from Mycobacterium tuberculosis in covalent complex with tetrahydrolipstatin provides insights into antigen 85 catalysis.J Biol Chem. 2018 Mar 9;293(10):3651-3662. doi: 10.1074/jbc.RA117.001681. Epub 2018 Jan 19. J Biol Chem. 2018. PMID: 29352107 Free PMC article.
-
The Molecular Genetics of Mycolic Acid Biosynthesis.Microbiol Spectr. 2014 Aug;2(4):MGM2-0003-2013. doi: 10.1128/microbiolspec.MGM2-0003-2013. Microbiol Spectr. 2014. PMID: 26104214 Review.
-
New approaches to target the mycolic acid biosynthesis pathway for the development of tuberculosis therapeutics.Curr Pharm Des. 2014;20(27):4357-78. doi: 10.2174/1381612819666131118203641. Curr Pharm Des. 2014. PMID: 24245756 Free PMC article. Review.
Cited by
-
The presence of 3-hydroxy oxylipins in pathogenic microbes.Prostaglandins Other Lipid Mediat. 2012 Jan;97(1-2):17-21. doi: 10.1016/j.prostaglandins.2011.11.001. Epub 2011 Nov 11. Prostaglandins Other Lipid Mediat. 2012. PMID: 22108026 Free PMC article. Review.
-
In vitro microbiological evaluation of 1,1'-(5,5'-(1,4-phenylene)bis(3-aryl-1H-pyrazole-5,1-(4H,5H)-diyl))diethanones, novel bisacetylated pyrazoles.Org Med Chem Lett. 2011 Sep 20;1(1):8. doi: 10.1186/2191-2858-1-8. Org Med Chem Lett. 2011. PMID: 22373408 Free PMC article.
-
Temperature-Induced Restructuring of Mycolic Acid Bilayers Modeling the Mycobacterium tuberculosis Outer Membrane: A Molecular Dynamics Study.Molecules. 2024 Feb 2;29(3):696. doi: 10.3390/molecules29030696. Molecules. 2024. PMID: 38338443 Free PMC article.
-
Molecular basis for the inhibition of β-hydroxyacyl-ACP dehydratase HadAB complex from Mycobacterium tuberculosis by flavonoid inhibitors.Protein Cell. 2015 Jul;6(7):504-17. doi: 10.1007/s13238-015-0181-1. Epub 2015 Jun 17. Protein Cell. 2015. PMID: 26081470 Free PMC article.
-
Flux balance analysis of mycolic acid pathway: targets for anti-tubercular drugs.PLoS Comput Biol. 2005 Oct;1(5):e46. doi: 10.1371/journal.pcbi.0010046. Epub 2005 Oct 14. PLoS Comput Biol. 2005. PMID: 16261191 Free PMC article.
References
-
- Admiraal, S. J., C. T. Walsh, and C. Khosla. 2001. The loading module of rifamycin synthetase is an adenylation-thiolation didomain with substrate tolerance for substituted benzoates. Biochemistry 40:6116-6123. - PubMed
-
- Anderson, D. H., G. Harth, M. A. Horwitz, and D. Eisenberg. 2001. An interfacial mechanism and a class of inhibitors inferred from two crystal structures of the Mycobacterium tuberculosis 30 kDa major secretory protein (antigen 85B), a mycolyl transferase. J. Mol. Biol. 307:671-681. - PubMed
-
- Asselineau, C., and J. Asselineau. 1978. Trehalose containing glycolipids. Prog. Chem. Fats Other Lipids 16:59-99. - PubMed
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Molecular Biology Databases
Research Materials
Miscellaneous