Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 2005 Jan;21(1):142-50.
doi: 10.1111/j.1460-9568.2004.03861.x.

Depolarization evokes different patterns of calcium signals and exocytosis in bovine and mouse chromaffin cells: the role of mitochondria

Affiliations
Comparative Study

Depolarization evokes different patterns of calcium signals and exocytosis in bovine and mouse chromaffin cells: the role of mitochondria

E Alés et al. Eur J Neurosci. 2005 Jan.

Abstract

This study was planned on the assumptions that different high-voltage activated calcium channels and/or the ability of mitochondria to take up Ca(2+) could be responsible for different cytosolic Ca(2+) concentrations ([Ca(2+)](c)) and catecholamine release responses in adrenal chromaffin cells of bovine and mouse species. Short K(+) pulses (2-5 s, 70 mM K(+)) increased [Ca(2+)](c) to a peak of about 1 microM; however, in bovine cells the decline was slower than in mouse cells. Secretory responses were faster in mouse but were otherwise quantitatively similar. Upon longer K(+) applications (1 min), elevations of [Ca(2+)](c) and secretion were prolonged in bovine cells; in contrast [Ca(2+)](c) in mouse cells declined three-fold faster and failed to sustain a continued secretion. Confocal [Ca(2+)](c) imaging following a 50-ms depolarizing pulse showed a similar Ca(2+) entry, but a rate of [Ca(2+)](c) increase and a maximum peak significantly higher in bovine cells; the rate of dissipation of the Ca(2+) wave was faster in the mouse. The mitochondrial protonophore CCCP (2 microm) halved the K(+)-evoked [Ca(2+)](c) and secretory signals in mouse cells, but had little affect on bovine responses. We conclude that the relative densities of L (15% in bovine and 50% in mouse) and P/Q Ca(2+) channels (50% in bovine and 15% in mouse) do not contribute to the observed differences; rather, the different intracellular distribution of Ca(2+), which is strongly influenced by mitochondria, is responsible for a more sustained secretory response in bovine, and for a faster and more transient secretory response in mouse chromaffin cells. It seems that mitochondria near the plasmalemma sequester Ca(2+) more rapidly and efficiently in the mouse than in the bovine chromaffin cell.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources