Testing association of a pathway with survival using gene expression data
- PMID: 15657105
- DOI: 10.1093/bioinformatics/bti267
Testing association of a pathway with survival using gene expression data
Abstract
Motivation: A recent surge of interest in survival as the primary clinical endpoint of microarray studies has called for an extension of the Global Test methodology to survival.
Results: We present a score test for association of the expression profile of one or more groups of genes with a (possibly censored) survival time. Groups of genes may be pathways, areas of the genome, clusters from a cluster analysis or all genes on a chip. The test allows one to test hypotheses about the influence of these groups of genes on survival directly, without the intermediary of single gene testing. The test is based on the Cox proportional hazards model and is calculated using martingale residuals. It is possible to adjust the test for the presence of covariates. We also present a diagnostic graph to assist in the interpretation of the test result, visualizing the influence of genes. The test is applied to a tumor dataset, revealing pathways from the gene ontology database that are associated with survival of patients.
Availability: The Global Test for survival has been incorporated into the R-package globaltest (version 3.0), available at http://www.bioconductor.org
Similar articles
-
Penalized Cox regression analysis in the high-dimensional and low-sample size settings, with applications to microarray gene expression data.Bioinformatics. 2005 Jul 1;21(13):3001-8. doi: 10.1093/bioinformatics/bti422. Epub 2005 Apr 6. Bioinformatics. 2005. PMID: 15814556
-
Pathway recognition and augmentation by computational analysis of microarray expression data.Bioinformatics. 2006 Jan 15;22(2):233-41. doi: 10.1093/bioinformatics/bti764. Epub 2005 Nov 8. Bioinformatics. 2006. PMID: 16278238
-
Clustering threshold gradient descent regularization: with applications to microarray studies.Bioinformatics. 2007 Feb 15;23(4):466-72. doi: 10.1093/bioinformatics/btl632. Epub 2006 Dec 20. Bioinformatics. 2007. PMID: 17182700
-
Dimension reduction methods for microarrays with application to censored survival data.Bioinformatics. 2004 Dec 12;20(18):3406-12. doi: 10.1093/bioinformatics/bth415. Epub 2004 Jul 15. Bioinformatics. 2004. PMID: 15256406
-
Survival analysis with high-dimensional covariates.Stat Methods Med Res. 2010 Feb;19(1):29-51. doi: 10.1177/0962280209105024. Epub 2009 Aug 4. Stat Methods Med Res. 2010. PMID: 19654171 Free PMC article. Review.
Cited by
-
Prognostic modeling of oral cancer by gene profiles and clinicopathological co-variables.Oncotarget. 2017 Jul 26;8(35):59312-59323. doi: 10.18632/oncotarget.19576. eCollection 2017 Aug 29. Oncotarget. 2017. PMID: 28938638 Free PMC article.
-
Semiparametric regression of multidimensional genetic pathway data: least-squares kernel machines and linear mixed models.Biometrics. 2007 Dec;63(4):1079-88. doi: 10.1111/j.1541-0420.2007.00799.x. Biometrics. 2007. PMID: 18078480 Free PMC article.
-
Globaltest confidence regions and their application to ridge regression.Biom J. 2021 Oct;63(7):1351-1365. doi: 10.1002/bimj.202000063. Epub 2021 May 27. Biom J. 2021. PMID: 34046931 Free PMC article.
-
Integrated analysis of microRNA and mRNA expression: adding biological significance to microRNA target predictions.Nucleic Acids Res. 2013 Aug;41(15):e146. doi: 10.1093/nar/gkt525. Epub 2013 Jun 14. Nucleic Acids Res. 2013. PMID: 23771142 Free PMC article.
-
Diagnostic and prognostic sarcoma signatures.Mol Diagn Ther. 2008;12(6):359-74. doi: 10.1007/BF03256302. Mol Diagn Ther. 2008. PMID: 19035623 Review.
MeSH terms
Substances
LinkOut - more resources
Full Text Sources