Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2004;32(5-6):379-426.
doi: 10.1615/critrevbiomedeng.v32.i56.10.

Fracture mechanics of cortical bone tissue: a hierarchical perspective

Affiliations
Review

Fracture mechanics of cortical bone tissue: a hierarchical perspective

Ozan Akkus et al. Crit Rev Biomed Eng. 2004.

Abstract

The performance of bone tissue in the presence of flaws is a highly remarkable one. Bone tissue is the outcome of an adaptive evolutionary process; thus, insight into the mechanisms by which it fails would provide valuable information not only for development of mechanically superior biomimetic materials but also for development of treatment modalities to prevent debilitating bone fractures. Clinically, fractures of skeletal organs occur as a result of aging, disease, overuse, and trauma. Fracture mechanics, a sub-discipline of solid mechanics that investigates the performance of cracked materials, has been employed extensively in characterizing the mechanisms by which bone tissue fractures. At present the fracture mechanisms at the macroscale are better characterized than at the microscale. On the other hand, a mechanistic understanding of damage evolution at the submicroscopic scale is largely limited to postulations with little experimental insight. The challenge of skeletal fragility will be dealt with more efficiently with deeper understanding of the fracture process at each hierarchical size scale. The most recent review on this subject matter was a decade ago, and there have been numerous developments in the fracture mechanics of bone since then. This review recaps the existing literature with an emphasis on the hierarchical nature of the fracture process in bone, entailing the supramolecular, microscopic, and macroscopic scales.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources