Number, position, and significance of the pseudouridines in the large subunit ribosomal RNA of Haloarcula marismortui and Deinococcus radiodurans
- PMID: 15659360
- PMCID: PMC1370709
- DOI: 10.1261/rna.7209905
Number, position, and significance of the pseudouridines in the large subunit ribosomal RNA of Haloarcula marismortui and Deinococcus radiodurans
Abstract
The number and position of the pseudouridines of Haloarcula marismortui and Deinococcus radiodurans large subunit RNA have been determined by a combination of total nucleoside analysis by HPLC-mass spectrometry and pseudouridine sequencing by the reverse transcriptase method and by LC/MS/MS. Three pseudouridines were found in H. marismortui, located at positions 1956, 1958, and 2621 corresponding to Escherichia coli positions 1915, 1917, and 2586, respectively. The three pseudouridines are all in locations found in other organisms. Previous reports of a larger number of pseudouridines in this organism were incorrect. Three pseudouridines and one 3-methyl pseudouridine (m3Psi) were found in D. radiodurans 23S RNA at positions 1894, 1898 (m3Psi), 1900, and 2584, the m3Psi site being determined by a novel application of mass spectrometry. These positions correspond to E. coli positions 1911, 1915, 1917, and 2605, which are also pseudouridines in E. coli (1915 is m3Psi). The pseudouridines in the helix 69 loop, residues 1911, 1915, and 1917, are in positions highly conserved among all phyla. Pseudouridine 2584 in D. radiodurans is conserved in eubacteria and a chloroplast but is not found in archaea or eukaryotes, whereas pseudouridine 2621 in H. marismortui is more conserved in eukaryotes and is not found in eubacteria. All the pseudoridines are near, but not exactly at, nucleotides directly involved in various aspects of ribosome function. In addition, two D. radiodurans Psi synthases responsible for the four Psi were identified.
Figures




Similar articles
-
Posttranscriptional modifications in the A-loop of 23S rRNAs from selected archaea and eubacteria.RNA. 2002 Feb;8(2):202-13. doi: 10.1017/s1355838202013365. RNA. 2002. PMID: 11911366 Free PMC article.
-
Pseudouridines and pseudouridine synthases of the ribosome.Cold Spring Harb Symp Quant Biol. 2001;66:147-59. doi: 10.1101/sqb.2001.66.147. Cold Spring Harb Symp Quant Biol. 2001. PMID: 12762017 Review.
-
A pseudouridine synthase required for the formation of two universally conserved pseudouridines in ribosomal RNA is essential for normal growth of Escherichia coli.RNA. 1998 Nov;4(11):1407-17. doi: 10.1017/s1355838298981146. RNA. 1998. PMID: 9814761 Free PMC article.
-
Sequence and structural conservation in RNA ribose zippers.J Mol Biol. 2002 Jul 12;320(3):455-74. doi: 10.1016/s0022-2836(02)00515-6. J Mol Biol. 2002. PMID: 12096903
-
Ribosomal RNA pseudouridines and pseudouridine synthases.FEBS Lett. 2002 Mar 6;514(1):17-25. doi: 10.1016/s0014-5793(02)02305-0. FEBS Lett. 2002. PMID: 11904174 Review.
Cited by
-
Combined in silico and experimental identification of the Pyrococcus abyssi H/ACA sRNAs and their target sites in ribosomal RNAs.Nucleic Acids Res. 2008 May;36(8):2459-75. doi: 10.1093/nar/gkn077. Epub 2008 Feb 27. Nucleic Acids Res. 2008. PMID: 18304947 Free PMC article.
-
Identification and characterization of the Thermus thermophilus 5-methylcytidine (m5C) methyltransferase modifying 23 S ribosomal RNA (rRNA) base C1942.J Biol Chem. 2012 Aug 10;287(33):27593-600. doi: 10.1074/jbc.M112.376160. Epub 2012 Jun 18. J Biol Chem. 2012. PMID: 22711535 Free PMC article.
-
An atlas of RNA base pairs involving modified nucleobases with optimal geometries and accurate energies.Nucleic Acids Res. 2015 Aug 18;43(14):6714-29. doi: 10.1093/nar/gkv606. Epub 2015 Jun 27. Nucleic Acids Res. 2015. PMID: 26117545 Free PMC article.
-
Mass spectrometry-based quantification of pseudouridine in RNA.J Am Soc Mass Spectrom. 2011 Aug;22(8):1363-72. doi: 10.1007/s13361-011-0137-5. Epub 2011 May 3. J Am Soc Mass Spectrom. 2011. PMID: 21953190 Free PMC article.
-
Pseudouridine modification in Caenorhabditis elegans spliceosomal snRNAs: unique modifications are found in regions involved in snRNA-snRNA interactions.BMC Mol Biol. 2005 Oct 19;6:20. doi: 10.1186/1471-2199-6-20. BMC Mol Biol. 2005. PMID: 16236171 Free PMC article.
References
-
- Agmon, I., Amit, M., Auerbach, T., Bashan, A., Baram, D., Bartels, H., Berisio, R., Greenberg, I., Harms, J., Hansen, H.A., et al. 2004. Ribosomal crystallography: A flexible nucleotide anchoring tRNA translocation, facilitates peptide-bond formation, chirality discrimination and antibiotics synergism. FEBS Lett. 567: 20–26. - PubMed
-
- Apffel, A., Chakel, J.A., Fischer, S., Lichtenwalter, K., and Hancock, W.S. 1997. Analysis of oligonucleotides by HPLC-electrospray ionization mass spectrometry. Anal. Chem. 69: 1320–1325. - PubMed
-
- Ban, N., Nissen, P., Hansen, J., Moore, P.B., and Steitz, T.A. 2000. The complete atomic structure of the large ribosomal subunit at 2.4 Å resolution. Science 289: 905–920. - PubMed
-
- Cohn, W.E. 1960. Pseudouridine, a carbon–carbon linked ribonucleo-side in ribonucleic acids: Isolation, structure, and chemical characteristics. J. Biol. Chem. 235: 1488–1498. - PubMed
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources