Mutants with temperature-sensitive defects in the Escherichia coli mismatch repair system: sensitivity to mispairs generated in vivo
- PMID: 15659661
- PMCID: PMC545721
- DOI: 10.1128/JB.187.3.840-846.2005
Mutants with temperature-sensitive defects in the Escherichia coli mismatch repair system: sensitivity to mispairs generated in vivo
Abstract
We have used direct selections to generate large numbers of mutants of Escherichia coli defective in the mismatch repair system and have screened these to identify mutants with temperature-sensitive defects. We detected and sequenced mutations that give rise to temperature-sensitive MutS, MutL, and MutH proteins. One mutation, mutS60, results in almost normal levels of spontaneous mutations at 37 degrees C but above this temperature gives rise to higher and higher levels of mutations, reaching the level of null mutations in mutS at 43 degrees C. However, at 37 degrees C the MutS60 protein can be much more easily titrated by mispairs than the wild-type MutS, as evidenced by the impaired ability to block homologous recombination in interspecies crosses and the increased levels of mutations from weak mutator alleles of mutD (dnaQ), mutC, and ndk. Strains with mutS60 can detect mispairs generated during replication that lead to mutation with much greater sensitivity than wild-type strains. The findings with ndk, lacking nucleotide diphosphate kinase, are striking. An ndk mutS60 strain yields four to five times the level of mutations seen in a full knockout of mutS. These results pose the question of whether similar altered Msh2 proteins result from presumed polymorphisms detected in tumor lines. The role of allele interactions in human disease susceptibility is discussed.
Figures
Similar articles
-
Escherichia coli mutator (Delta)polA is defective in base mismatch correction: the nature of in vivo DNA replication errors.J Mol Biol. 2005 Aug 12;351(2):299-308. doi: 10.1016/j.jmb.2005.06.014. J Mol Biol. 2005. PMID: 16005896
-
Escherichia coli strains (ndk) lacking nucleoside diphosphate kinase are powerful mutators for base substitutions and frameshifts in mismatch-repair-deficient strains.Genetics. 2002 Sep;162(1):5-13. doi: 10.1093/genetics/162.1.5. Genetics. 2002. PMID: 12242219 Free PMC article.
-
Escherichia coli mutator mutants deficient in methylation-instructed DNA mismatch correction.Proc Natl Acad Sci U S A. 1980 Feb;77(2):1063-7. doi: 10.1073/pnas.77.2.1063. Proc Natl Acad Sci U S A. 1980. PMID: 6987663 Free PMC article.
-
Frameshift mutation, microsatellites and mismatch repair.Mutat Res. 1999 Nov;437(3):195-203. doi: 10.1016/s1383-5742(99)00066-6. Mutat Res. 1999. PMID: 10592327 Review.
-
Methyl-directed DNA mismatch correction.J Biol Chem. 1989 Apr 25;264(12):6597-600. J Biol Chem. 1989. PMID: 2651430 Review.
Cited by
-
Mutators and hypermutability in bacteria: the Escherichia coli paradigm.J Genet. 2009 Dec;88(3):379-91. doi: 10.1007/s12041-009-0058-2. J Genet. 2009. PMID: 20086310 Review. No abstract available.
-
Transient overexpression of DNA adenine methylase enables efficient and mobile genome engineering with reduced off-target effects.Nucleic Acids Res. 2016 Feb 29;44(4):e36. doi: 10.1093/nar/gkv1090. Epub 2015 Oct 22. Nucleic Acids Res. 2016. PMID: 26496947 Free PMC article.
-
CRISPR/Cas9-Assisted Seamless Genome Editing in Lactobacillus plantarum and Its Application in N-Acetylglucosamine Production.Appl Environ Microbiol. 2019 Oct 16;85(21):e01367-19. doi: 10.1128/AEM.01367-19. Print 2019 Nov 1. Appl Environ Microbiol. 2019. PMID: 31444197 Free PMC article.
-
DNA Mismatch Repair.EcoSal Plus. 2012 Nov;5(1):10.1128/ecosalplus.7.2.5. doi: 10.1128/ecosalplus.7.2.5. EcoSal Plus. 2012. PMID: 26442827 Free PMC article.
-
Ultrahigh-throughput screening-assisted in vivo directed evolution for enzyme engineering.Biotechnol Biofuels Bioprod. 2024 Jan 22;17(1):9. doi: 10.1186/s13068-024-02457-w. Biotechnol Biofuels Bioprod. 2024. PMID: 38254175 Free PMC article.
References
-
- Aaltonen, L. A., P. Peltomäki, F. S. Leach, P. Sistonen, L. Pylkkänen, J.-P. Mecklin, H. Järvinen, S. M. Powell, J. Jen, S. R. Hamilton, G. M. Petersen, K. W. Kinzler, B. Vogelstein, and A. de la Chapelle. 1993. Clues to the pathogenesis of familial colorectal cancer. Science 260:812-816. - PubMed
-
- Al-Tassan, N., N. H. Chmiel, J. Maynard, N. Fleming, A. L. Livingston, G. T. Williams, A. K. Hodges, D. R. Davies, S. S. David, J. R. Sampson, and J. P. Cheadle. 2002. Inherited variants of MYH associated with somatic G:C→T:A mutations in colorectal tumors. Nat. Genet. 30:227-232. - PubMed
-
- Ban, C., M. Junop, and W. Yang. 1999. Transformation of MutL by ATP binding and hydrolysis: a switch in DNA mismatch repair. Cell 97:85-97. - PubMed
-
- Ban, C., and W. Yang. 1998. Crystal structure and ATPase activity of MutL: implications for DNA repair and mutagenesis. Cell 95:541-552. - PubMed
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Molecular Biology Databases