Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2005 Feb;187(3):840-6.
doi: 10.1128/JB.187.3.840-846.2005.

Mutants with temperature-sensitive defects in the Escherichia coli mismatch repair system: sensitivity to mispairs generated in vivo

Affiliations

Mutants with temperature-sensitive defects in the Escherichia coli mismatch repair system: sensitivity to mispairs generated in vivo

Esther S Hong et al. J Bacteriol. 2005 Feb.

Abstract

We have used direct selections to generate large numbers of mutants of Escherichia coli defective in the mismatch repair system and have screened these to identify mutants with temperature-sensitive defects. We detected and sequenced mutations that give rise to temperature-sensitive MutS, MutL, and MutH proteins. One mutation, mutS60, results in almost normal levels of spontaneous mutations at 37 degrees C but above this temperature gives rise to higher and higher levels of mutations, reaching the level of null mutations in mutS at 43 degrees C. However, at 37 degrees C the MutS60 protein can be much more easily titrated by mispairs than the wild-type MutS, as evidenced by the impaired ability to block homologous recombination in interspecies crosses and the increased levels of mutations from weak mutator alleles of mutD (dnaQ), mutC, and ndk. Strains with mutS60 can detect mispairs generated during replication that lead to mutation with much greater sensitivity than wild-type strains. The findings with ndk, lacking nucleotide diphosphate kinase, are striking. An ndk mutS60 strain yields four to five times the level of mutations seen in a full knockout of mutS. These results pose the question of whether similar altered Msh2 proteins result from presumed polymorphisms detected in tumor lines. The role of allele interactions in human disease susceptibility is discussed.

PubMed Disclaimer

Figures

FIG. 1.
FIG. 1.
Rates of base substitution and frameshift mutations at different temperatures in strain EH1, carrying mutS60. (A) Rates of rpoB mutations leading to Rifr (base substitutions). (B) Rates of lacZ mutations leading to Lac+ (frameshifts).

Similar articles

Cited by

References

    1. Aaltonen, L. A., P. Peltomäki, F. S. Leach, P. Sistonen, L. Pylkkänen, J.-P. Mecklin, H. Järvinen, S. M. Powell, J. Jen, S. R. Hamilton, G. M. Petersen, K. W. Kinzler, B. Vogelstein, and A. de la Chapelle. 1993. Clues to the pathogenesis of familial colorectal cancer. Science 260:812-816. - PubMed
    1. Al-Tassan, N., N. H. Chmiel, J. Maynard, N. Fleming, A. L. Livingston, G. T. Williams, A. K. Hodges, D. R. Davies, S. S. David, J. R. Sampson, and J. P. Cheadle. 2002. Inherited variants of MYH associated with somatic G:C→T:A mutations in colorectal tumors. Nat. Genet. 30:227-232. - PubMed
    1. Argueso, J. L., D. Smith, J. Yi, M. Waase, S. Sarin, and E. Alani. 2002. Analysis of conditional mutations in the Saccharomyces cerevisiae MLH1 gene in mismatch repair and in meiotic crossing over. Genetics 160:909-921. - PMC - PubMed
    1. Ban, C., M. Junop, and W. Yang. 1999. Transformation of MutL by ATP binding and hydrolysis: a switch in DNA mismatch repair. Cell 97:85-97. - PubMed
    1. Ban, C., and W. Yang. 1998. Crystal structure and ATPase activity of MutL: implications for DNA repair and mutagenesis. Cell 95:541-552. - PubMed

Publication types

LinkOut - more resources