Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 2005 Feb;86(Pt 2):405-412.
doi: 10.1099/vir.0.80411-0.

Inhibition of West Nile virus entry by using a recombinant domain III from the envelope glycoprotein

Affiliations
Comparative Study

Inhibition of West Nile virus entry by using a recombinant domain III from the envelope glycoprotein

J J H Chu et al. J Gen Virol. 2005 Feb.

Abstract

The envelope glycoprotein located at the outermost surface of the flavivirus particle mediates entry of virus into host cells. In this study, the involvement of domain III of West Nile virus (WNV-DIII) envelope protein in binding to host cell surface was investigated. WNV-DIII was first expressed as a recombinant protein and purified after a solubilization and refolding procedure. The refolded WNV-DIII protein displays a content of beta-sheets consistent with known homologous structures of other flavivirus envelope DIII, shown by using circular dichroism analysis. Purified recombinant WNV-DIII protein was able to inhibit WNV entry into Vero cells and C6/36 mosquito cells. Recombinant WNV-DIII only partially blocked the entry of dengue-2 (Den 2) virus into Vero cells. However, entry of Den 2 virus into C6/36 was blocked effectively by recombinant WNV-DIII. Murine polyclonal serum produced against recombinant WNV-DIII protein inhibited infection with WNV and to a much lesser extent with Den 2 virus, as demonstrated by plaque neutralization assays. Together these results provided strong evidence that immunoglobulin-like DIII of WNV envelope protein is responsible for binding to receptor on the surface of host cells. The data also suggest that similar attachment molecule(s) or receptor(s) were used by WNV and Den 2 virus for entry into C6/36 mosquito cells.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources