Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2004 Dec:1030:202-7.
doi: 10.1196/annals.1329.026.

Enhanced expression of natural resistance-associated macrophage protein 1 in atherosclerotic lesions may be associated with oxidized lipid-induced apoptosis

Affiliations

Enhanced expression of natural resistance-associated macrophage protein 1 in atherosclerotic lesions may be associated with oxidized lipid-induced apoptosis

Wei Li et al. Ann N Y Acad Sci. 2004 Dec.

Abstract

The natural resistance-associated macrophage proteins (Nramps) can modulate inflammatory reactions. Nramps are not only responsible for intracellular divalent metal transport but also determine the macrophage functions in inflammatory processes. In the present study we tested whether Nramp1 is involved in macrophage apoptosis induced by oxidized lipids in atherogenesis. Arterial segments of Watanabe heritable hyperlipidemic rabbits were used for an examination of Nramp1 mRNA by in situ RT-PCR and macrophage immunohistochemistry. Annexin V/PI staining and terminal dUTP nick-end labeling (TUNEL) techniques were used for apoptosis detection. We found that, in macrophage-rich areas (positive to RMA-11) of the rabbit atherosclerotic aorta, there were lesion-dependent increases in Nramp1 mRNA, which are mainly apoptotic foamy macrophages that are positive to TUNEL staining. U937 cells were treated with 7beta-hydroxycholesterol (7beta-OH) in the presence or absence of the redox-active iron chelator desferrioxamine (DFO) or 1,10-phenanthroline. The cellular iron chelators considerably reduced, whereas iron compounds enhanced, 7beta-OH-induced apoptosis and necrosis. DFO also decreased mRNA levels of Nramp1, whereas both iron compounds and 7beta-OH dramatically enhanced the expression of Nramp1 mRNA, particularly among 7beta-OH-induced apoptotic cells. We conclude that the enhanced expression of Nramp1 in macrophage regions of atherosclerotic lesions may be associated with ferrous iron-enhanced, oxidized lipid-induced apoptosis. This finding reveals a novel function of Nramp1 in atherogenesis.

PubMed Disclaimer

Publication types

Substances

LinkOut - more resources