Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2005 Feb;55(3):687-98.
doi: 10.1111/j.1365-2958.2004.04423.x.

Neisseria meningitidis NadA is a new invasin which promotes bacterial adhesion to and penetration into human epithelial cells

Affiliations
Free article

Neisseria meningitidis NadA is a new invasin which promotes bacterial adhesion to and penetration into human epithelial cells

Barbara Capecchi et al. Mol Microbiol. 2005 Feb.
Free article

Abstract

Neisseria meningitidis is a human pathogen, which is a major cause of sepsis and meningitis. The bacterium colonizes the upper respiratory tract of approximately 10% of humans where it lives as a commensal. On rare occasions, it crosses the epithelium and reaches the bloodstream causing sepsis. From the bloodstream it translocates the blood-brain barrier, causing meningitis. Although all strains have the potential to cause disease, a subset of them, which belongs to hypervirulent lineages, causes disease more frequently than others. Recently, we described NadA, a novel antigen of N. meningitidis, present in three of the four known hypervirulent lineages. Here we show that NadA is a novel bacterial invasin which, when expressed on the surface of Escherichia coli, promotes adhesion to and invasion into Chang epithelial cells. Deletion of the N-terminal globular domain of recombinant NadA or pronase treatment of human cells abrogated the adhesive phenotype. A hypervirulent strain of N. meningitidis where the nad A gene was inactivated had a reduced ability to adhere to and invade into epithelial cells in vitro. NadA is likely to improve the fitness of N. meningitidis contributing to the increased virulence of strains that belong to the hypervirulent lineages.

PubMed Disclaimer

Publication types

MeSH terms

Substances

LinkOut - more resources