Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2005 Apr;26(4):779-84.
doi: 10.1093/carcin/bgi019. Epub 2005 Jan 20.

Decreased n-6/n-3 fatty acid ratio reduces the invasive potential of human lung cancer cells by downregulation of cell adhesion/invasion-related genes

Affiliations

Decreased n-6/n-3 fatty acid ratio reduces the invasive potential of human lung cancer cells by downregulation of cell adhesion/invasion-related genes

Shu-Hua Xia et al. Carcinogenesis. 2005 Apr.

Abstract

Recent studies have shown opposing effects of n-6 and n-3 fatty acids on the development of cancer and suggest a role for the ratio of n-6 to n-3 fatty acids in the control of cancer. However, whether an alteration in the n-6/n-3 fatty acid ratio of cancer cells affects their invasive potential has not been well investigated. We recently developed a genetic approach to modify the n-6/n-3 ratio by expression of the Caenorhabditis elegans fat-1 gene encoding an n-3 desaturase that converts n-6 to n-3 fatty acids in mammalian cells. The objective of this study was to examine the effect of alteration in the n-6/n-3 fatty acid ratio on the invasive potential of human lung cancer A549 cells. Adenovirus-mediated gene transfer of the n-3 desaturase resulted in a marked reduction of the n-6/n-3 fatty acid ratio, particularly the ratio of arachidonic acid to eicosapentaenic acid. Cell adhesion assay showed that the cells expressing fat-1 gene had a delayed adhesion and retarded colonization. Matrigel assay for invasion potential indicated a 2-fold reduction of cell migration in the fat-1 transgenic cells when compared with the control cells. An increased apoptosis was also observed in the fat-1 transgenic cells. Microarray and quantitative polymerase chain reaction revealed a downregulation of several adhesion/invasion-related genes (MMP-1, integrin-alpha2 and nm23-H4) in the fat-1 transgenic cells. These results demonstrate that a decreased n-6/n-3 fatty acid ratio reduces the invasion potential of human lung cancer cells by probably downregulating the cell adhesion/invasion-related molecules, suggesting a role for the ratio of n-6 to n-3 fatty acids in the prevention and treatment of cancer.

PubMed Disclaimer

Publication types

MeSH terms