Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2005 Feb 1;174(3):1357-64.
doi: 10.4049/jimmunol.174.3.1357.

CD70 signaling is critical for CD28-independent CD8+ T cell-mediated alloimmune responses in vivo

Affiliations

CD70 signaling is critical for CD28-independent CD8+ T cell-mediated alloimmune responses in vivo

Akira Yamada et al. J Immunol. .

Abstract

The inability to reproducibly induce robust and durable transplant tolerance using CD28-B7 pathway blockade is in part related to the persistence of alloreactive effector/memory CD8(+) T cells that are less dependent on this pathway for their cellular activation. We studied the role of the novel T cell costimulatory pathway, CD27-CD70, in alloimmunity in the presence and absence of CD28-B7 signaling. CD70 blockade prolonged survival of fully mismatched vascularized cardiac allografts in wild-type murine recipients, and in CD28-deficient mice induced long-term survival while significantly preventing the development of chronic allograft vasculopathy. CD70 blockade had little effect on CD4(+) T cell function but prevented CD8(+) T cell-mediated rejection, inhibited the proliferation and activation of effector CD8(+) T cells, and diminished the expansion of effector and memory CD8(+) T cells in vivo. Thus, the CD27-CD70 pathway is critical for CD28-independent effector/memory CD8(+) alloreactive T cell activation in vivo. These novel findings have important implications for the development of transplantation tolerance-inducing strategies in primates and humans, in which CD8(+) T cell depletion is currently mandatory.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms