Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 2005 Feb 1;174(3):1608-15.
doi: 10.4049/jimmunol.174.3.1608.

Expression and activity of beta-defensins and LL-37 in the developing human lung

Affiliations
Comparative Study

Expression and activity of beta-defensins and LL-37 in the developing human lung

Timothy D Starner et al. J Immunol. .

Abstract

Immaturity of innate immunity contributes to the increased susceptibility of human neonates to infection. The lung is a major portal of entry for potential pathogens in the neonate, and human beta-defensins (HBDs) and LL-37 participate in pulmonary innate immunity. We hypothesized that these antimicrobial factors would be developmentally regulated, expressed by neonatal pulmonary tissues, and participate in neonatal innate immunity. We found HBD-2 to be the predominant beta-defensin in human neonatal lung. HBD-2 mRNA expression was developmentally regulated, induced by the proinflammatory factor IL-1beta, and decreased by dexamethasone. Additionally, HBD-2 abundance in neonatal tracheal aspirates increased as a function of gestational age. HBD-1 had a lower level of expression compared with HBD-2 and was induced by dexamethasone. HBD-3 and LL-37 messages were not detected in airway epithelial cultures. Additionally, each antimicrobial peptide exhibited a unique spectrum of antimicrobial activity and salt sensitivity against bacteria commonly causing sepsis in the neonate. Lower levels of HBD-2 may be one factor contributing to the increased susceptibility of premature infants to pulmonary infections.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources