Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2004 Dec;10(12):2221-4.
doi: 10.3201/eid1012.040647.

Genome sequence and attenuating mutations in West Nile virus isolate from Mexico

Affiliations

Genome sequence and attenuating mutations in West Nile virus isolate from Mexico

David W C Beasley et al. Emerg Infect Dis. 2004 Dec.

Abstract

The complete genome sequence of a Mexican West Nile virus isolate, TM171-03, included 46 nucleotide (0.42%) and 4 amino acid (0.11%) differences from the NY99 prototype. Mouse virulence differences between plaque-purified variants of TM171-03 with mutations at the E protein glycosylation motif suggest the emergence of an attenuating mutation.

PubMed Disclaimer

Figures

Figure 1
Figure 1
Western blot showing differing mobility of E proteins from nine plaque-purified variants of West Nile virus (WNV) strain TM-171 Mex03. Nucleotide sequencing of strains in lanes 5 to 9 indicated the presence of an "NYS" glycosylation motif at residues 154 to 156 of E, while strains in lanes 1 to 4 encoded "NYP." Antigens were separated in a nonreducing 5%/10% discontinuous sodium dodecyl sulfate–polyacrylamide gel, transferred to 0.2 μm nitrocellulose and detected with WNV-specific monoclonal antibody 7H2 (6).
Figure 2
Figure 2
Neighbor-joining phylogenetic tree based on complete genome sequences of West Nile virus strains. Strain TM171-03 is indicated in bold text. The topology of maximum parsimony and maximum likelihood trees was essentially identical. Bayesian analysis also confirmed the close relationship between TM171-03 and NY00-grouse3282 sequences (data not shown). Bootstrap values are shown for major branches (500 replicates). GenBank accession numbers for sequences used to construct the tree are indicated on the branches.

Similar articles

Cited by

References

    1. Gould LH, Fikrig E. West Nile virus: a growing concern? J Clin Invest. 2004;113:1102–7. - PMC - PubMed
    1. Estrada-Franco JG, Navarro-Lopez R, Beasley DWC, Coffey L, Carrara AS, Travassos da Rosa A, et al. West Nile virus in Mexico: evidence of widespread circulation since July 2002. Emerg Infect Dis. 2003;9:1604–7. - PMC - PubMed
    1. Lanciotti RS, Roehrig JT, Deubel V, Smith J, Parker M, Steele K, et al. Origin of the West Nile virus responsible for an outbreak of encephalitis in the northeastern United States. Science. 1999;286:2333–7. 10.1126/science.286.5448.2333 - DOI - PubMed
    1. Beasley DWC, Davis CT, Guzman H, Vanlandingham DL, Travassos da Rosa APA, Parsons RE, et al. Limited evolution of West Nile virus has occurred during its southwesterly spread in the United States. Virology. 2003;309:190–5. 10.1016/S0042-6822(03)00150-8 - DOI - PubMed
    1. Ronquist F, Huelsenbeck JP. MRBAYES 3: Bayesian phylogenetic inference under mixed models. Bioinformatics. 2003;19:1572–4. 10.1093/bioinformatics/btg180 - DOI - PubMed

Publication types

LinkOut - more resources