A study of the membrane-water interface region of membrane proteins
- PMID: 15663952
- DOI: 10.1016/j.jmb.2004.11.036
A study of the membrane-water interface region of membrane proteins
Abstract
The most conspicuous structural characteristic of the alpha-helical membrane proteins is their long transmembrane alpha-helices. However, other structural elements, as yet largely ignored in statistical studies of membrane protein structure, are found in those parts of the protein that are located in the membrane-water interface region. Here, we show that this region is enriched in irregular structure and in interfacial helices running roughly parallel with the membrane surface, while beta-strands are extremely rare. The average amino acid composition is different between the interfacial helices, the parts of the transmembrane helices located in the interface region, and the irregular structures. In this region, hydrophobic and aromatic residues tend to point toward the membrane and charged/polar residues tend to point away from the membrane. The interface region thus imposes different constraints on protein structure than do the central hydrocarbon core of the membrane and the surrounding aqueous phase.
Similar articles
-
Sequence context and modified hydrophobic moment plots help identify 'horizontal' surface helices in transmembrane protein structure prediction.J Struct Biol. 2004 Oct;148(1):51-65. doi: 10.1016/j.jsb.2004.06.002. J Struct Biol. 2004. PMID: 15363787
-
A fluorescence method to define transmembrane alpha-helices in membrane proteins: studies with bacterial diacylglycerol kinase.Biochemistry. 2007 Sep 25;46(38):10950-9. doi: 10.1021/bi7008213. Epub 2007 Aug 28. Biochemistry. 2007. PMID: 17722884
-
Coils in the membrane core are conserved and functionally important.J Mol Biol. 2008 Jun 27;380(1):170-80. doi: 10.1016/j.jmb.2008.04.052. Epub 2008 May 1. J Mol Biol. 2008. PMID: 18511074
-
The membrane-water interface region of membrane proteins: structural bias and the anti-snorkeling effect.Trends Biochem Sci. 2005 Jul;30(7):355-7. doi: 10.1016/j.tibs.2005.05.003. Trends Biochem Sci. 2005. PMID: 15935679 Review.
-
Discontinuous membrane helices in transport proteins and their correlation with function.J Struct Biol. 2007 Aug;159(2):261-7. doi: 10.1016/j.jsb.2007.01.011. Epub 2007 Feb 1. J Struct Biol. 2007. PMID: 17350860 Review.
Cited by
-
Marginally hydrophobic transmembrane α-helices shaping membrane protein folding.Protein Sci. 2015 Jul;24(7):1057-74. doi: 10.1002/pro.2698. Epub 2015 May 30. Protein Sci. 2015. PMID: 25970811 Free PMC article. Review.
-
Computational studies of membrane proteins: models and predictions for biological understanding.Biochim Biophys Acta. 2012 Apr;1818(4):927-41. doi: 10.1016/j.bbamem.2011.09.026. Epub 2011 Oct 12. Biochim Biophys Acta. 2012. PMID: 22051023 Free PMC article. Review.
-
Charged residues next to transmembrane regions revisited: "Positive-inside rule" is complemented by the "negative inside depletion/outside enrichment rule".BMC Biol. 2017 Jul 24;15(1):66. doi: 10.1186/s12915-017-0404-4. BMC Biol. 2017. PMID: 28738801 Free PMC article.
-
Accurate de novo structure prediction of large transmembrane protein domains using fragment-assembly and correlated mutation analysis.Proc Natl Acad Sci U S A. 2012 Jun 12;109(24):E1540-7. doi: 10.1073/pnas.1120036109. Epub 2012 May 29. Proc Natl Acad Sci U S A. 2012. PMID: 22645369 Free PMC article.
-
Structure and membrane interactions of Arabidopsis thaliana DGD2, a glycosyltransferase in the chloroplast membrane.J Biol Chem. 2025 May;301(5):108431. doi: 10.1016/j.jbc.2025.108431. Epub 2025 Mar 20. J Biol Chem. 2025. PMID: 40120685 Free PMC article.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources