Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2005 Mar 1;208(1):141-7.
doi: 10.1016/j.tox.2004.11.026.

In vitro genotoxicity of the West African anti-malarial herbal Cryptolepis sanguinolenta and its major alkaloid cryptolepine

Affiliations

In vitro genotoxicity of the West African anti-malarial herbal Cryptolepis sanguinolenta and its major alkaloid cryptolepine

Charles Ansah et al. Toxicology. .

Abstract

Cryptolepine (CLP), the major alkaloid of the West African anti-malarial herbal Cryptolepis sanguinolenta (Periplocaceae) is a DNA intercalator that exhibits potent toxicity to a variety of mammalian cells in vitro. We have hypothesized that the DNA intercalating properties of cryptolepine could trigger genetic damage in mammalian cells. The objective of the present study was therefore to assess the ability of both cryptolepine (CLP) and the traditional anti-malarial formulation, the aqueous extract from the roots (CSE) to induce mutation at the hprt locus and micronuclei (MN) formation in V79, a Chinese hamster fibroblast cell line commonly used in genetic toxicity studies. CSE at a high concentration (50 microg/ml) induced an apparent significant ten fold increase in mutant frequency compared to vehicle control (mean of 38 versus 4 mutant clones/10(6) surviving cells) but, this concentration of CSE was very toxic (<15% cell survival). CLP did not appear to be mutagenic in the dosage range used (up to 2.5 microM, equivalent to 1.1 microg/ml). However, after 24h treatment of V79 cells both CSE and CLP induced a dose-dependent increase in micronuclei of 4.15% and 6.43% (25 microg/ml CSE and 2.5 microM, equivalent to 1.1 microg/ml CLP, respectively) compared to 0.36% in vehicle control. These results show that treatment of mammalian cells with CSE and CLP can lead to DNA damage and we suggest that the routine use of CSE and the potential use of CLP derivatives in malaria chemotherapy could carry a genotoxic risk.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources