Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2005 May;146(5):2271-84.
doi: 10.1210/en.2004-1104. Epub 2005 Jan 21.

Alpha1- and beta1-adrenoceptor signaling fully compensates for beta3-adrenoceptor deficiency in brown adipocyte norepinephrine-stimulated glucose uptake

Affiliations

Alpha1- and beta1-adrenoceptor signaling fully compensates for beta3-adrenoceptor deficiency in brown adipocyte norepinephrine-stimulated glucose uptake

Ekaterina Chernogubova et al. Endocrinology. 2005 May.

Abstract

To assess the relative roles and potential contribution of adrenergic receptor subtypes other than the beta3-adrenergic receptor in norepinephrine-mediated glucose uptake in brown adipocytes, we have here analyzed adrenergic activation of glucose uptake in primary cultures of brown adipocytes from wild-type and beta3-adrenergic receptor knockout (KO) mice. In control cells in addition to high levels of beta3-adrenergic receptor mRNA, there were relatively low alpha1A-, alpha1D-, and moderate beta1-adrenergic receptor mRNA levels with no apparent expression of other adrenergic receptors. The levels of alpha1A-, alpha1D-, and beta1-adrenergic receptor mRNA were not changed in the beta3-KO brown adipocytes, indicating that the beta3-adrenergic receptor ablation does not influence adrenergic gene expression in brown adipocytes in culture. As expected, the beta3-adrenergic receptor agonists BRL-37344 and CL-316 243 did not induce 2-deoxy-d-glucose uptake in beta3-KO brown adipocytes. Surprisingly, the endogenous adrenergic neurotransmitter norepinephrine induced the same concentration-dependent 2-deoxy-D-glucose uptake in wild-type and beta3-KO brown adipocytes. This study demonstrates that beta1-adrenergic receptors, and to a smaller degree alpha1-adrenergic receptors, functionally compensate for the lack of beta3-adrenergic receptors in glucose uptake. Beta1-adrenergic receptors activate glucose uptake through a cAMP/protein kinase A/phosphatidylinositol 3-kinase pathway, stimulating conventional and novel protein kinase Cs. The alpha1-adrenergic receptor component (that is not evident in wild-type cells) stimulates glucose uptake through a phosphatidylinositol 3-kinase and protein kinase C pathway in the beta3-KO cells.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms