Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2005 Feb;23(2):179-85.
doi: 10.1097/01.shk.0000148071.73975.38.

Nitric oxide-cyclic GMP contributes to abnormal activation of Na+-K+-ATPase in the aorta from rats with endotoxic shock

Affiliations

Nitric oxide-cyclic GMP contributes to abnormal activation of Na+-K+-ATPase in the aorta from rats with endotoxic shock

Shiu-Jen Chen et al. Shock. 2005 Feb.

Abstract

We examined pharmacologically the influence of nitric oxide (NO), guanosine 3':5'-cyclic monophosphate (cyclic GMP), adenine 3':5'-cyclic monophosphate (cyclic AMP), and protein kinase C-linked signaling pathways on relaxation to potassium in aortic segments isolated from rats treated for 6 h with bacterial endotoxin (lipopolysaccharide). Endotoxemia for 6 h was associated with a severe hypotension and vascular hyporeactivity to norepinephrine (NE), and an increase in plasma NO in vivo and aortic NO ex vivo. The NE-induced contraction was attenuated and the potassium-induced relaxation was accentuated in the aorta of rats with endotoxic shock. Ouabain inhibited the potassium-induced relaxation in aortae from normal and endotoxemic rats. 8-Bromo-cyclic GMP significantly enhanced the potassium-induced relaxation in control aortae, whereas 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one (ODQ) abolished this difference between normal and endotoxemic rats. In contrast, inhibition of potassium-induced relaxation was observed in aortae from normal and endotoxemic rats treated with 8-bromo-cyclic AMP or phorbol 12-myristate 13-acetate. Individually, inhibitors of protein kinase A or protein kinase C did not significantly alter relaxation to potassium; however, in combination, these inhibitors significantly potentiated relaxation in aortae from control rats. These results suggest that activity of Na(+)-K(+)-ATPase is enhanced in the vascular bed of animals with endotoxic shock and that this elevation in activity is mediated by NO-cyclic GMP, but not by cyclic AMP-protein kinase A or protein kinase C.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources