Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2005 Mar 1;72(3):258-68.
doi: 10.1002/jbm.a.30219.

Mechanical performance and osteoblast-like cell responses of fluorine-substituted hydroxyapatite and zirconia dense composite

Affiliations

Mechanical performance and osteoblast-like cell responses of fluorine-substituted hydroxyapatite and zirconia dense composite

Hae-Won Kim et al. J Biomed Mater Res A. .

Abstract

A fluorine-substituted hydroxyapatite (FHA) and zirconia (ZrO(2)) dense composite (50:50 by volume) was fabricated, and its feasibility for hard tissue applications was investigated in terms of its mechanical properties and osteoblast-like cell (MG63) responses in vitro. The incorporation of fluorine into the hydroxyapatite (HA) structure was highly effective in producing a completely dense apatite-ZrO(2) composite through a pressureless sintering route, by preventing the thermal degradation of the apatite and ZrO(2). The resultant FHA-ZrO(2) dense composite had excellent mechanical properties, such as flexural strength (310 MPa), fracture toughness (3.4 MPam(1/2)), hardness (10 GPa), and elastic modulus (160 GPa). The flexural strength and fracture toughness of the composite showed a noticeable improvement by a factor of approximately 4 with respect to the pure apatites (HA and FHA). The MG63 cellular responses to the composite were assessed in terms of the cell proliferation (cell number and [(3)H]-thymidine incorporation) and differentiation (alkaline phosphatase activity, osteocalcin, and collagen production). The cells on the FHA-ZrO(2) composite spread and grew well, and proliferated actively during the culture period. The expression of alkaline phosphatase, osteocalcin, and collagen by the cells on the composite showed a similar trend to that on the pure apatites, although slight down-regulations were observed, implying that the FHA-ZrO(2) 50:50 composite retains the osteoblastic functionality and traits of the pure HA ceramics to a high degree. This finding, in conjunction with the considerable improvements in mechanical properties, supports the extended use of this composite for hard tissue applications.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources