Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2005 Feb;33(Pt 1):302-5.
doi: 10.1042/BST0330302.

Expression of sweet taste receptors of the T1R family in the intestinal tract and enteroendocrine cells

Affiliations

Expression of sweet taste receptors of the T1R family in the intestinal tract and enteroendocrine cells

J Dyer et al. Biochem Soc Trans. 2005 Feb.

Abstract

The composition of the intestinal luminal content varies considerably with diet. It is important therefore that the intestinal epithelium senses and responds to these significant changes and regulates its functions accordingly. Although it is becoming evident that the gut epithelium senses and responds to luminal nutrients, little is known about the nature of the nutrient sensing molecule and the downstream cellular events. A prototype example is the modulation in the capacity of the gut to absorb monosaccharides via the intestinal luminal membrane Na(+)/glucose cotransporter, SGLT1. The experimental evidence suggests that luminal sugar is sensed by a glucose sensor residing on the luminal membrane of the gut epithelium and linked to a G-protein-coupled receptor, cAMP/PKA (protein kinase A) pathway, resulting ultimately in modulation of intestinal monosaccharide absorption. Here we report the expression, at mRNA and protein levels, of members of the T1R sweet taste receptors, and the alpha-subunit of the G-protein gustducin, in the small intestine and the enteroendocrine cell line, STC-1. In the small intestine, there is a highly coordinated expression of sweet taste receptors and gustducin, a G-protein implicated in intracellular taste signal transduction, throughout the gut. The potential involvement of these receptors in sugar sensing in the intestine will facilitate our understanding of intestinal nutrient sensing, with implications for better nutrition and health maintenance.

PubMed Disclaimer

LinkOut - more resources